LIMITING ABSORPTION PRINCIPLE FOR DIRAC OPERATOR WITH CONSTANT MAGNETIC FIELD AND LONG-RANGE POTENTIAL

KOICHIRO YOKOYAMA

(Received December 20, 1999)

1. Introduction

The Dirac Hamiltonian with magnetic vector potential $\mathbf{a} = (a_j(x))_{j=1,...,d}$ is expressed by the following form

(1.1)
$$H(\mathbf{a}) = \sum_{j=1}^{d} \gamma_j (P_j - a_j) + m \gamma_{d+1} + V,$$

where $P_j = 1/i\partial_{x_j}$, V is a multiplication of an Hermitian matrix V(x). m is the mass of electron. The matrices $\{\gamma_i\}$ satisfy the following relations

(1.2)
$$\gamma_j \gamma_k + \gamma_k \gamma_j = 2\delta_{jk} \mathbf{1} \quad (j, k = 1, \dots, d+1).$$

Here δ_{jk} is Kronecker's delta and **1** is an identity matrix. We assume that the speed of the light c = 1. When $V \equiv 0$, the square of $H(\mathbf{a})$ has the form

(1.3)
$$H(\mathbf{a})^2 = \sum_{j=1}^d (P_j - a_j)^2 + m^2 + \frac{1}{i} \sum_{1 \le j < k \le d} b_{jk}(x) \gamma_j \gamma_k,$$

where

(1.4)
$$b_{jk}(x) = \partial_{x_k} a_j(x) - \partial_{x_j} a_k(x).$$

It is called Pauli's Hamiltonian. The skew symmetric matrix $(b_{jk}(x))$ is the magnetic field associated with **a**. We say the magnetic field is asymptotically constant if it satisfies the following conditions as $|x| \to \infty$:

(1.5)
$$b_{jk}(x) \to {}^{\exists} \Lambda_{jk} \quad (1 \le j, k \le d),$$

where $(\Lambda_{jk})_{j,k}$ is a constant matrix.

The aim of this paper is to prove the limiting absorption principle for $H(\mathbf{a})$ with a constant magnetic field $(b_{ik}(x))$ and a long-range electric potential V(x) when d = 3.