ON PERIODIC β -EXPANSIONS OF PISOT NUMBERS AND RAUZY FRACTALS

SHUNJI ITO, and YUKI SANO

(Received October 6, 1999)

0. Introduction

Let λ be the real maximum solution of the polynomial $p(x) : k_1, k_2 \in \mathbf{N}$ and $k_1 \ge k_2$ $(k_1 \ne 0)$

$$p(x) = x^3 - k_1 x^2 - k_2 x - 1.$$

The polynomial p(x) is given as the characteristic polynomial of the matrix M:

$$M = \begin{bmatrix} k_1 & k_2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}.$$

And for each k_1, k_2 the real cubic number λ is a Pisot number. A Pisot number is an algebraic integer whose conjugates other than itself have modulus less than one. Hence,

$$|\lambda'|, |\lambda''| < 1,$$

where λ', λ'' are algebraic conjugates of λ . We denote the column and row eigenvectors of λ by

$$M\begin{pmatrix}1\\lpha\\eta\end{pmatrix} = \lambda\begin{pmatrix}1\\lpha\\eta\end{pmatrix}$$
 and ${}^{t}M\begin{pmatrix}1\\\gamma\\\delta\end{pmatrix} = \lambda\begin{pmatrix}1\\\gamma\\\delta\end{pmatrix}$,

where t indicates the transpose.

Let $T_{\lambda} : [0, 1) \rightarrow [0, 1)$ be the transformation given by

$$T_{\lambda}x = \lambda x - [\lambda x],$$