ON BLOCK IDEMPOTENTS OF MODULAR GROUP RINGS

MASARU OSIMA

To the memory of TADASI NAKAYAMA

We consider a group G of finite order $g = p^a g'$, where p is a prime number and (p, g') = 1. Let Ω be the algebraic number field which contains the g-th roots of unity. Let K_1, K_2, \ldots, K_n be the classes of conjugate elements in G and the first $m(\leq n)$ classes be p-regular. There exist n distinct (absolutely) irreducible characters $\chi_1, \chi_2, \ldots, \chi_n$ of G. Let \mathfrak{o} be the ring of all algebraic integers of Ω and let \mathfrak{p} be a prime ideal of \mathfrak{o} dividing p. If we denote by \mathfrak{o}^* the ring of all \mathfrak{p} -integers of Ω , then \mathfrak{p} generates an ideal \mathfrak{p}^* of \mathfrak{o}^* and we have

$$\Omega^* = \mathfrak{o}^*/\mathfrak{p}^* \cong \mathfrak{o}/\mathfrak{p}$$

for the residue class field. The residue class map of 0^* onto Ω^* will be denoted by an asterisk; $\alpha \to \alpha^*$.

Let $\Gamma = \Gamma(G)$ be the modular group ring of G over \mathcal{Q}^* and let

$$Z = Z_1 \oplus Z_2 \oplus \cdots \oplus Z_s$$

be the decomposition of the center Z = Z(G) of Γ into indecomposable ideals Z_{σ} . Then the ordinary irreducible characters χ_i and the modular irreducible characters φ_{κ} of G (for p) are distributed into s blocks B_1, B_2, \ldots, B_s , each χ_i and φ_{κ} belonging to exactly one block B_{σ} . We determined in [6] explicitly the primitive orthogonal idempotents δ_{σ} of Z corresponding to B_{σ} in the following way. We set

$$b_{\alpha} = \sum_{\chi_i \in B_{\sigma}} z_i \chi_i(a_{\alpha}^{-1}) / g \qquad (a_{\alpha} \in K_{\alpha})$$

where $z_i = \chi_i(1)$. Let U_{κ} be the indecomposable constituent of the regular representation of G corresponding to the modular irreducible representation F_{κ} and denote by u_{κ} its degree. We see that $b_a = \sum_{\varphi_{\kappa} \in B_{\sigma}} u_{\kappa} \varphi_{\kappa}(a_a^{-1})/g \in \mathfrak{o}^*$ for *p*-regular

Received July 13, 1965.