ON CARTAN PSEUDO GROUPS

A. M. RODRIGUES

Let M be a domain in an Euclidean space and let Γ be a pseudo group of transformations* of M. We say that Γ is a Cartan pseudo group [1, 2] if the following conditions are satisfied:

- 1) There exists a domain M' and a projection $\rho: M \to M'$, such that the orbits of Γ are the fibers of the projection ρ . We assume moreover that there is a system of coordinates (x) of M' and a system of coordinates (x, y) of M such that the fibers of ρ are defined by (x) = constants,
 - 2) There are forms ω^i , $\widetilde{\omega}^{\lambda}$, $i=1\cdots m$, $\lambda=1\cdots n$, defined in D such that
 - a) $(\omega^i, \widetilde{\omega}^{\lambda})$ is a basis of the space of linear forms at every point of M,

(1) b)
$$d\omega^i = \frac{1}{2} c^i_{jk} \omega^j \wedge \omega^k + a^i_{j\lambda} \omega^j \wedge \widetilde{\omega}^{\lambda}$$

where c_{jk}^i , a_{jk}^i are functions on M which depend on (x) only,

- c) $\omega^r = dx^r$ for $1 \le r \le$ dimension M',
- d) The matrices $a_{\lambda} = ||a_{j\lambda}^i||$ are linearly independent at every point of M,
- e) Let π_1 and π_2 be respectively the projections of $M \times M$ into the first and second factors. The closed differential system Σ on $M \times M$, with independent variables $\mathbf{x} \circ \pi_1$, $\mathbf{y} \circ \pi_1$ generated by

$$x^r \circ \pi_1 - x^r \circ \pi_2 = 0, \ 1 \le r \le \text{dimension } M',$$

$$\pi_1^* \omega^i - \pi_2^* \omega^i = 0 \qquad 1 \le i \le m$$

is in involution at every integral point,

3) A local transformation f of M is in Γ if and only if f preserves the forms ω^i , i.e. $f^*\omega^i = \omega^i$, $i = 1, \ldots, m$.

In this note we prove that every differential form on M which is invariant under all transformations of a Cartan pseudo group Γ is a linear combination of the forms ω^i the coefficient being functions of x only.

Received on 1 May, 1962.

^{*} All maps and differential forms considered in this note are assumed to be analytic.