A PROPERTY OF META-ABELIAN EXTENSIONS

YOSHIOMI FURUTA

Let k be an algebraic number field of finite degree, A the maximal abelian extension over k, and M a meta-abelian field over k of finite degree, that is, M / k be a normal extension over k of finite degree with an abelian group as commutator group of its Galois group. Then $\mathbf{A} M$ is a kummerian extension over A. If its kummerian generators are obtained from a subfield K of \mathbf{A}, namely if there exist elements a_{1}, \ldots, a_{t} of K such that $\mathbf{A} M=\mathbf{A}\left({ }^{m_{1}} \sqrt{a_{1}}, \ldots\right.$, $\left.{ }^{m_{t}} \sqrt{a_{t}}\right)$, then we shall call M a meta-abelian field over k attached to K. If furthermore there exist b_{1}, \ldots, b_{s} of K such that $\mathbf{A} M=\mathbf{A}\left(\sqrt[n_{1}]{b_{1}}, \ldots \sqrt[n_{s}]{b_{s}}\right)$ and M contains all n_{i}-th roots of unity ($i=1, \ldots, s$), then we shall call M a K-meta-abelian field over k and $b_{1}, \ldots, b_{s} M$-reduced elements of K. For k -meta-abelian fields over k, we have in [2] the decomposition law of primes of k in $M .^{1)}$ The purpose of the present paper is to show that this decomposition law is effective also for meta-abelian fields over k attached to k, or more exactly these fields are already k-meta-abelian fields over k. We shall have a little more generally the following

Theorem. If M is a meta-abelian field over k attached to K, then $M K$ is a K-meta-abelian field over k.

In order to prove the theorem it is sufficient to observe the case where K is equal to k. Now let M be a meta-abelian field over k attached to k, \mathbf{A}_{0} the largest abelian subfield of M, and M_{i} a cyclic subfield of M over \mathbf{A}_{0} whose degree is a power of a prime l. Then there exists an element a_{i} of k such

[^0]
[^0]: Received May 31, 1961.

 1) The symbol $\left[\begin{array}{l}a \\ p\end{array}\right]_{n}$ is not defined in [2] for the case $r=0$. Therefore to state the decomposion law it is necessry that $r \geqq 1$, namely k containes all l-th roots of unity.
 ing that lemma 4 in [2] is also true for $r=0$, we have the decomposition law in M / k by means of this symbol also for the case $r=0$. Here $\left[\frac{a}{p}\right]_{n}\left[\frac{b}{p}\right]_{n}=\left[\frac{a b}{p}\right]_{n}$ does not hold when $\left[\frac{a}{p}\right]_{n}=0$.
