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1. Introduction

In this note we shall give a modified definition of cohomology groups for

algebras. For a class of (infinite rank) algebras (which includes Frobenius

algebras, group rings of infinite groups and division algebras of countable rank

over fields), these groups can be characterized in a manner similar to the

cohomology groups in the * Almost Zero theory' of B. Eckmann [2]. Actually,

in the case of group rings, these coincide with the cohomology groups in the

almost zero theory.

We shall see that a theorem [3, Th. 11] of S. Eilenberg and T. Nakayama

can be deduced from our general setting. We shall also derive a necessary

and sufficient condition for modules over algebras of the above class to be

weakly projective, which is a generalization of a proposition [1, p. 200] of H.

Cartan and S. Eilenberg on modules over group rings. For all notions relating

to Homological algebra, we refer to [1].

2. The almost zero theory

We shall recall here the definition of the almost-zero theory [1, p. 3581.

Let 7τ be a group, C an abelian group with trivial τr-operators. Let X be a

left 7r-complex. A cochain /eHom 2 (X n , C) is called a π finite cochain if

for any p e Xn, f(x p) = 0 for all but a finite number of x e TΓ. For any left

Z(π)-module A, we have an isomorphism [1, p. 359]

π)(A, Z(π) & C ) - H o m z U , C)

where Homz (A, C) is the subgroup of Hom2 (A, C) consisting of all homomor-
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