CORRECTION TO MY PAPER "ON THE EXISTENCE OF UNRAMIFIED SEPARABLE INFINITE SOLVABLE EXTENSIONS OF FUNCTION FIELDS OVER FINITE FIELDS" IN NAGOYA MATHE-MATICAL JOURNAL VOL. 13 (1958)

HISASI MORIKAWA

1.1. In the above referred paper we have said that, for the proof of the theorem, it is sufficient to prove lemmas 1 and 2. But it is not correct. A correct proof is given in the followings.

We assume that

1° $q \ge 11$,

 $2^{\circ} g_{\kappa} > 1$,

 3° L/K is an unramified separable normal extension which is regular over k,

 4° (S is a subgroup of $J_{L}(, k)$ such that L(S)/K is normal and $J_{L}(, k)/S$ is of type (l, \ldots, l) , where l is a prime number,

5° $[L(\mathfrak{G}): L] = l^{s}m$, where (l, m) = 1.

Instead of lemma 2, we must prove the following lemmas:

LEMMA 3. If $G(L(\mathfrak{G})/L)$ is contained in the center of $G(L(\mathfrak{G})/K)$, there exists a subgroup \mathfrak{G}' in $J_L(\ , k)$ such that i) $L(\mathfrak{G}')/K$ is normal and ii) $[L(\mathfrak{G}): L(\mathfrak{G}')] = l$.

LEMMA 4. If there exists b in $J_{L(\mathfrak{G})}(\ , k)$ such that $a(\varepsilon_{\nu}) + (\delta_{J_{L(\mathfrak{G})}} - \eta(\varepsilon_{\nu}))$ $b \in A_{L(\mathfrak{G})/L}(\ , k)$ for every $\varepsilon_{\nu} \in G(L(\mathfrak{G})/L)$, then there exists \mathfrak{G}_{1} in $J_{L(\mathfrak{G})}(\ , k)$ such that i) $L(\mathfrak{G})(\mathfrak{G}_{1})/K$ is normal and ii) $L(\mathfrak{G})(\mathfrak{G}_{1}) \cong L(\mathfrak{G})$.

LEMMA 5. If $[L(\mathfrak{G}): L] = l$, there exists b in $J_{L(\mathfrak{G})}(\ , k)$ such that $a(\varepsilon) + (\delta_{J_{L(\mathfrak{G})}} - \eta(\varepsilon))b \in A_{L(\mathfrak{G})/L}(\ , k)$, where ε is a generator of $G(L(\mathfrak{G})/L)$.

LEMMA 6. If $[B_{L(\mathfrak{G})/L}(\mathbf{a}, \mathbf{k}): \{0\}]$ is not coprime to m, then there exists \mathfrak{G}_1 in $J_{L(\mathfrak{G})}(\mathbf{a}, \mathbf{k})$ such that i) $L(\mathfrak{G})(\mathfrak{G}_1)/K$ is normal and ii) $L(\mathfrak{G})(\mathfrak{G}_1)$ $\cong L(\mathfrak{G}).$

Received July 29, 1958.