ON THE EXISTENCE OF UNRAMIFIED SEPARABLE INFINITE SOLVABLE EXTENSIONS OF FUNCTION FIELDS OVER FINITE FIELDS*

HISASI MORIKAWA

In the present note, using the results in the previous paper,¹⁾ we shall prove the following existence theorem:

THEOREM. Let k be a finite field with q elements and K/k be a regular extension of dimension one over k. Then, if $q \ge 11$ and the genus g_{κ} of K/k is greater than one, there exists an unramified separable infinite solvable extension of K which is regular over k^{2} .

§1. The results in [1]

1.1. Let k be a finite field with q elements and K_L/k be a regular extension of dimension one over k. Let L/k be an unramified separable normal extension of K which is also regular over k. We denote by G(L/K) the galois group of L/K. We denote by C_L and C_K non-singular complete models of K/k and L/k, respectively, and denote by $\hat{\pi}_{L/K}$ the trace mapping of C_L onto C_K . We denote by $J_L(J_K)$ and $\varphi_L(\varphi_K)$ the jacobian variety of $C_L(C_K)$ and a canonical mapping of $C_L(C_K)$ into $J_L(J_K)$, respectively, where we may assume that $J_L(J_K)$ and $\varphi_L(\varphi_K)$ are also defined over k. We denote by $\pi_{L/K}$ the extension of $\hat{\pi}_{L/K}$ which is a homomorphism of J_L onto J_K such that $\pi_{L/K} \circ \varphi_L = \varphi_K \circ \hat{\pi}_{L/K} + c$ with a constant point c. After a suitable translation of φ_K , we assume that

(1)
$$\pi_{L/K} \circ \varphi_L = \varphi_K \circ \hat{\pi}_{L/K}.$$

We denote by $\Lambda(, k)$ the subgroup of k-rational points of a commutative group variety Λ .

Each element ε_{ν} of G(L/K) induces an automorphism $\{\eta_L(\varepsilon_{\nu})\}$ of J_L and

Received October 25, 1957.

^{*} This note was prepared while the author was a Yukawa Fellow at Osaka University.

¹⁾ We shall refer this paper with [1].

²⁾ We mean by an infinite solvable extension a solvable extension of infinite degree.