ON THE DIMENSION OF MODULES AND ALGEBRAS IX

DIRECT LIMITS

ISRAEL BERSTEIN

Let J be a directed set and let $\langle A_j, \varphi_{ij} \rangle$ be a direct system of rings indexed by J and with limit A. Let $\langle A_j, \psi_{ij} \rangle$ be a direct system of groups indexed by J. Assume that each A_j is a left A_j -module and that $\psi_{ij}(\lambda a) = \varphi_{ij}(\lambda) \psi_{ij}(a)$ for each $\lambda \in A_j$, $a \in A_j$. Then the limit A of $\langle A_j, \psi_{ij} \rangle$ is a left A-module.

THEOREM. If J is countable, then

$$\operatorname{l.dim}_{\Lambda} A \leq 1 + \sup_{j} \operatorname{l.dim}_{\Lambda_{j}} A_{j}.$$

COROLLARY 1. If J is countable, then

l. gl. dim $\Lambda \leq 1 + \sup_{i=1}^{n} l. gl. \dim_{i=1}^{n} J_{j}$.

COROLLARY 2. Let $\{K_j, v_{ij}\}$ be a direct system of commutative rings indexed by J and with limit K. Assume that each A_j is a K_j -algebra and that $\varphi_{ij}(k\lambda)$ $= v_{ij}(k)\varphi_{ij}(\lambda)$ for $k \in K_j$, $\lambda \in A_j$. Then A is a K-algebra. If J is countable, then

K-dim $\Lambda \leq 1 + \sup_{i \in I} K_i$ -dim Λ_i .

To derive Cor. 2 we note that

K-dim
$$\Lambda = 1$$
. dim $\Lambda^e \Lambda$, where $\Lambda^e = \Lambda \otimes_K \Lambda^*$,

and that Λ^e is the direct limit of $\{\Lambda^e_j\}$. Cor. 2 is a generalization of a theorem by Kuročkin [1] (see also [2], p. 92).

Proof of the Theorem. We consider the exact sequences

$$0 \longrightarrow R_j \longrightarrow F_j \longrightarrow A_j \longrightarrow 0, \qquad j \in J$$
$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0$$

where F_j is the free Λ_j -module with the elements of A_j as Λ_j -basis and

Received December 19, 1957.