AN INVESTIGATION ON THE LOGICAL STRUCTURE OF MATHEMATICS (III)⁰

FUNDAMENTAL DEDUCTIONS

SIGEKATU KURODA

In this Part (III) the proofs in UL are given for fundamental formulas concerning the following dependent variables:

Elementary set	$\{a_1,\ldots,a_n\};$
Ordered pair 1)	$\langle a, b \rangle$;
Image ²⁾ by σ of a	σ 'a ;
Image ²⁾ by σ of elements of a	σ"a;
Domain of operator	D_{σ} ;
Range of operator	\mathbf{W}_{σ} ;
Uniqueness	Un;
Bi-uniqueness	Un_2 ;
Inverse operator	σ^{-1} ;
One-to-one mapping	$\operatorname{Map}_{2}^{a,b}$;
Composition of operators	σοτ;
Restriction of operator	$\sigma \upharpoonright a$;
Identical mapping	<i>t</i> .

The following defining formulas are used for these dependent variables:

```
u \in \{a_1, \dots, a_n\} \equiv u = a_1 \vee \dots \vee u = a_n,
u \in \langle ab \rangle \equiv u = \langle a \rangle \vee u = \langle ab \rangle,
u \in \sigma' a \equiv \exists x. \langle ax \rangle \in \sigma \land u \in x,
u \in \sigma'' a \equiv \exists x. x \in a \land \langle xu \rangle \in \sigma,
u \in D_\sigma \equiv \exists x. \langle ux \rangle \in \sigma,
u \in W_\sigma \equiv \exists x. \langle xu \rangle \in \sigma,
u \in W_\sigma \equiv \exists x. \langle xu \rangle \in \sigma,
u \in U_n \equiv \forall xyz. \langle xy \rangle \in u \land \langle xz \rangle \in u \rightarrow y = z,
```

Received February 19, 1958.

⁰⁾ See foot note 0) in Part (IV) published in this same volume.

¹⁾ $\langle a, b \rangle$ is also written as $\langle ab \rangle$.

 $^{^{2)}}$ $\sigma^{4}a$ as well $\sigma^{4}a$ are also written in the same way as a^{σ} , when the distinction is clear by the context.