ON THE DIMENSION OF PARACOMPACT HAUSDORFF SPACES

KEIÔ NAGAMI

This short note gives the generalized sum theorem for Lebesgue dimension of paracompact Hausdorff spaces. Our theorem, though it is a generalization of Mr. Morita's sum theorem for fully normal spaces [3, Theorem 3.2] which is essentially based on his generalized sum theorem for normal spaces [3, Theorem 3.1], is obtained by very brief arguments, using only the usual sum theorem for normal spaces.

THEOREM 1. A paracompact Hausdorff space R is $\leq n$ -dimensional if and only if it is locally $\leq n$ -dimensional.¹⁾

Proof. 'Only if' part is obvious. We shall prove 'if' part. For every point $p \in R$, there exists an open neighbourhood V(p) whose closure is $\leq n$ -dimensional. Since R is strongly screenable [4, Theorem 2], there exists an open covering $\{U_{\alpha}; \alpha \in \bigcup_{i=1}^{\infty} A_i\}$ which refines $\{V(p); p \in R\}$ such that each $\mathbb{I}_i = \{U_{\alpha}; \alpha \in A_i\}$ forms a discrete collection. It can easily be seen, from $\leq n$ -dimensionality of \overline{U}_{α} and from discreteness of \mathbb{I}_i , that each $\overline{U}_i = \bigcup_{\alpha \in A_i} \overline{U}_{\alpha}$ is $\leq n$ -dimensional. Thus R is $\leq n$ -dimensional as the sum of countable $\leq n$ -dimensional closed sets [1, Theorem 4.2]. Q.E.D.

THEOREM 2. (Generalized sum theorem) If a paracompact Hausdarff space R is covered by a collection of $\leq n$ -dimensional closed sets, $\{F_{\alpha}; \alpha \in A\}$, which is locally countable, R is $\leq n$ -dimensional.

Proof. Let p be an arbitrary point of R and V(p) be a neighbourhood of it such that $A(p) = \{\alpha : \overline{V(p)} \cap F_{\alpha} \neq \emptyset\}$ consists of at most countable sets of indices. Since R is normal, $\overline{V(p)}$ is normal as a relative space. Then the sum

Received February 24, 1954.

¹⁾ A space is called locally $\leq n$ -dimensional, if every point of the space has a closed neighbourhood whose dimension is at most n.

 $^{^{2)}}$ A collection of subsets of R is called locally countable, if every point of R has an open neighbourhood of it which meets at most countable elements of the collection.