CORRECTIONS TO MY PAPER "ON THE STRUCTURE OF COMPLETE LOCAL RINGS" 1)

MASAYOSHI NAGATA

The proof of Proposition 2 and that of Corollary to Proposition 3 in my previous paper "On the structure of complete local rings"¹⁾ are not correct.² Here we want to correct them.

Proof of Proposition 2.

Since the previous proof of Proposition 2 is valid when R/m is perfect, we treat only the case when R/m is not perfect.

Starting from $K_0 = R/\mathfrak{m}$, we obtain K_n (n = 1, 2, ...) from K_{n-1} by adjoining all *p*-th roots of elements of K_{n-1} .

Definition. Let a local ring R_1 with maximal ideal \mathfrak{m}_1 be a subring of another local ring R_2 with maximal ideal \mathfrak{m}_2 . We say that R_2 is unramified with respect to R_1 if $\mathfrak{m}_2 = \mathfrak{m}_1 R_2$ and $\mathfrak{m}_2^k \cap R_1 = \mathfrak{m}_1^k$ for every positive integer k.

(1) Equal characteristic case.

We construct a sequence of local rings $R = R^{(0)} \subset R^{(1)} \subset \ldots$ such that (1) $R^{(n)}$ is unramified with respect to R, (2) $R^{(n)}/\mathfrak{m}R^{(n)} = K_n$ and (3) $(R^{(n)})^p \subseteq R^{(n-1)}$.

The existence of such a sequence obviously follows from Zorn's Lemma if we observe that a monic polynomial f(x) over a local ring, say R^* , is irreducible modulo its maximal ideal, then $R^*[x]/(f(x))$ is unramified with respect to R^* . (We may use the *p*-basis).

Let S be the union of all \mathbb{R}^{n} . Then S is a local ring unramified with respect to R. For every element a^* of \mathbb{R}/\mathbb{m} , we construct a sequence (a_n) as follows: Let b_n be a representative of $a^{*p^{-n}}$ in \mathbb{R}_n and set $a_n = b_n^{p^n}$. Then $a_n \in \mathbb{R}$ and the limit a, which is the multiplicative representative of a^* , is in R. Thus we have Proposition 2 in this case.

(2) Unequal characteristic case.

As in above, we construct a sequence of local rings $R = R^{(0)} \subset R^{(1)} \subset \ldots$ satisfying the above conditions (1) and (2) as follows: Let $\mathfrak{M} = \mathfrak{M}^{(0)}$ be a sys-

Received 26 July, 1952.

¹⁾ Nagoya Math. Journ. 1 (1950), pp. 63-70.

²⁾ Prof. I. S. Cohen (Massachusetts Institute of Technology, U.S.A.) pointed out the error of the proof of Proposition 2. I am grateful to him for his kind communication.