Y. Kakuda Nagoya Math. J. Vol. 48 (1972), 159–168

SATURATED IDEALS IN BOOLEAN EXTENSIONS

YUZURU KAKUDA

0. Introduction. Let κ be an uncountable cardinal, and let λ be a regular cardinal less than κ . Let *I* be a λ -saturated non-trivial ideal on κ . Prikry, in his thesis, showed that, in certain Boolean extensions, κ has a λ -saturated non-trivial ideal on κ . More precisely,

THEOREM (Prikry [8]). Let κ, λ and I be as above. Let \mathscr{B} be a λ -saturated complete Bollean algebra. Let $J \in V^{(\mathfrak{S})}$ such that, with probability **1**, J is the ideal on $\check{\kappa}$ generated by \check{I} . Then, it is \mathscr{B} -valid that J is a $\check{\lambda}$ -saturated non-trivial ideal on $\check{\kappa}$.

The following questions naturally arise; 1) If I is κ -saturated (κ^+ -saturated), does J remain κ -saturated (κ^+ -saturated)? 2) If sat(\mathscr{B}) = κ , what is the saturatedness of J?

For 1), we obtain the following theorem.

THEOREM 1. Let κ and λ be as above. Let γ be a regular cardinal such that $\lambda \leq \gamma \leq \kappa^+$, and let I be a γ -saturated non-trivial ideal on κ . Let \mathscr{B} be a λ -saturated complete Boolean algebra. Then, it is \mathscr{B} -valid that J is γ -saturated.

For 2), we get the following theorems.

THEOREM 2. Let κ be an uncountable cardinal, and I be a κ -saturated non-trivial ideal on κ . Let \mathscr{B} be a homogeneous complete Boolean algebra such that sat $(\mathscr{B}) = \kappa$. Then, it is \mathscr{B} -valid that J is not κ -saturated.

THEOREM 3. Let κ be a measurable cardinal, and I be a non-trivial prime ideal on κ . Let \mathscr{B} be a homogeneous complete Boolean algebra such that sat $(\mathscr{B}) = \kappa$. Then, it is \mathscr{B} -valid that J is not κ^+ -saturated.

We will prove the above theorems as applications of a certain useful lemma, which will be proved in $\S 4$.

Received February 7, 1972.