K. Harada Nagoya Math. J. Vol. 38 (1970), 27-40

A CHARACTERIZATION OF THE SIMPLE GROUP $U_3(5)$

KOICHIRO HARADA*

Dedicated to Professor Katuzi Ono

0. In this note we consider a finite group G which satisfies the following conditions:

(0.1) G is a doubly transitive permutation group on a set Ω of m+1 letters, where m is an odd integer ≥ 3 ,

(0. 2) if H is a subgroup of G and contains all the elements of G which fix two different letters α , β , then H contains unique permutation $h_0 \neq 1$ which fixes at least three letters,

(0.3) every involution of G fixes at least three letters,

(0.4) G is not isomorphic to one of the groups of Ree type.

Here we mean by groups of Ree type the groups which satisfy the conditions of H. Ward [13] and the minimal Ree group of order $(3-1)3^3$ (3^3+1) .

We shall prove the following theorem.

THEOREM. The simple group $U_3(5)$ is the only group with the properties $(0,1) \sim (0,4)$.

(Remark: A theorem of R. Ree [8] seems to be incomplete).

The theorem is proved in a usual argument. Final identification of $U_{\mathfrak{z}}(5)$ is completed by a theorem of rank 3-groups due to D.G. Higman.

Our notation is standard and will be explained when first introduced.

1. Before proving our theorem, we quote here various results proved by R. Ree [8].

Received November 4, 1968

^{*} The author expresses his gratitude to Prof. Gorenstein who has pointed out a gap in his original proof. This research was partially supported by National Science Foundation grant GP-7952X.