H. Nomoto Nagoya Math. J. Vol. 38 (1970), 21–25

ON A CLASS OF METRICAL AUTOMORPHISMS ON GAUSSIAN MEASURE SPACE

HISAO NOMOTO

To Professor KATUZI ONO on the occasion of his 60th birthday

1. Introduction. Let E be an infinite dimensional real nuclear space and H be its completion by a continuous Hilbertian norm || || of E. Then we have the relation

$$E \subset H \subset E^*$$

where E^* is the conjugate space of E. Consider a function $C(\xi)$ on E defined by the formula

(1) $C(\xi) = e^{-\|\xi\|^2/2}, \ \xi \in E.$

Then $C(\xi)$ is a positive definite and continuous function with C(0)=1. Therefore, by Bochner-Minlos' theorem, there exists a unique probability measure μ on E^* such that

(2)
$$\int_{E^*} e^{i \langle x, \xi \rangle} d\mu(x) = e^{-||\xi||^2/2}, \ \xi \in E,$$

where $\langle x, \xi \rangle$ being the canonical bilinear form. The measure μ is defined on the σ -algebra \mathcal{L} generated by all cylinder sets of E^* ([1]). We call μ a Gaussian measure.

Let O(H) be the group formed by all linear and orthogonal operators acting on H. After [3], we consider a subgroup O(E) of the group O(H)which is defined as the collection of all g's of O(H) having the property that each of g is a linear homeomorphism from E onto E. An operator gof O(E) is called a rotation of E. As is seen from the formula (2), the conjugate operator g^* of a rotation g is a metrical automorphism on the space (E^*, μ) . The purpose of this paper is to generalize this fact and we shall prove that

Received March 31 1969.