T. Kawada Nagoya Math. J. Vol. 35 (1969), 109–132

ON THE UPPER AND LOWER CLASS FOR GAUSSIAN PROCESSES WITH SEVERAL PARAMETERS

TAKAYUKI KAWADA

1. In the study on Hölder-continuity of Brownian motion, A.N.Kolmogorov introduced the concept of upper and lower classes and presented a criterion with the integral form to test whether some function belongs to upper or lower class; the so-called Kolmogorov's test (I.Petrovesky [10]). P.Lévy considered the upper and lower class with regard to the uniform continuity of Brownian motion. We shall recall the definition of the upper and lower classes. We shall call $\varphi(t)$ a function belonging to the upper class with regard to the uniform continuity of Brownian motion x(t) if there exists a positive number $\varepsilon(w)$ such that, for almost all w,

(1.1) $|t - t'| \leq \epsilon(w)$ implies $|x(t) - x(t')| \leq |t - t'|^{1/2} \cdot \varphi(1/|t - t'|).$

On the other hand, we shall call $\varphi(t)$ a function belonging to the lower class with regard to the uniform continuity of Brownian motion x(t) if, for almost all w and for any positive number δ , there exist a pair (t, t') such that $|t - t'| \leq \delta$ and (1.1) does not hold.^{*)}

P.Lévy showed that the function

$$\varphi(t) = c \cdot (2\log t)^{1/2}$$

belongs to the upper class if c > 1 and to the lower class if c < 1 (P. Lévy [8]). Further, K.L.Chung, P.Erdös and T.Sirao [3] proved that a continuous, non-negative and non-decreasing function $\varphi(t)$ belongs to upper or lower class according as the integral

Received October 1, 1968

^{*)} It turns out that every continuous positive and non-decreasing function belongs to either upper class or lower class.