S. Dragosh Nagoya Math. J. Vol. 35 (1969), 53-82

HOROCYCLIC CLUSTER SETS OF FUNCTIONS DEFINED IN THE UNIT DISC

STEPHEN DRAGOSH

1. Introduction.

This paper contains in part the author's Ph.D. dissertation written under the supervision of Professor F. Bagemihl at the University of Wisconsin-Milwaukee. This research was supported by grants from the National Science Foundation and the University of Wisconsin Graduate School.

Unless otherwise stated, $f: D \to W$ shall mean f(z) is an arbitrary singlevalued function defined in the open unit disc D: |z| < 1 and assuming values in the extended complex plane W. The unit circle |z| = 1 is denoted by Γ .

We assume the reader to be familiar with the rudiments of the theory of cluster sets. A general reference would be Noshiro [21] or Collingwood and Lohwater [9]. We shall use the following sets defined in [9, p. 207]:

 $C(f,\zeta)$, the cluster set of f at ζ ; $C_{\mathscr{A}}(f,\zeta)$, the outer angular cluster set of f at ζ ; $C_{\mathscr{A}}(f,\zeta)$, the cluster set of f at ζ on a Stolz angle \varDelta at ζ ; F(f), the set of Fatou points of f; I(f), the set of Plessner points of f; M(f), the set of Meier points of f; $R(f,\zeta)$, the range of f at ζ .

We denote the cluster set of f at ζ on a chord χ at ζ by $C_{\chi}(f,\zeta)$. The principal chordal cluster set of f at ζ is defined to be

$$\Pi_{\mathbf{x}}(f,\boldsymbol{\zeta}) = \bigcap_{\mathbf{x}} C_{\mathbf{x}}(f,\boldsymbol{\zeta}),$$

where the intersection is taken over all chords χ at ζ ; and the inner angular cluster set of f at ζ is defined to be

Received July 8, 1968