N. Nobusawa Nagoya Math. J. Vol. 35 (1969), 47–51

ON A CROSSED PRODUCT OF A DIVISION RING

NOBUO NOBUSAWA

1. Let R and C be a ring and its center, and G an automorphism group of R of order n. By a factor set $\{c_{\sigma,\tau}\}$, we mean a system of regular elements $c_{\sigma,\tau}$ ($\sigma,\tau \in G$) in C such that

(1) $c_{\sigma,\tau\rho}c_{\tau,\rho} = c_{\sigma\tau,\rho}c_{\sigma,\tau}^{\rho}.$

A crossed product $W = W(R, G, \{c_{\sigma,\tau}\})$ is a ring containing R such that $W = \sum_{\sigma \in G} u_{\sigma}R$ (direct) with regular elements u_{σ} and $au_{\sigma} = u_{\sigma}a^{\sigma}$ for a in R and $u_{\sigma}u_{\tau} = u_{\sigma\tau}c_{\sigma,\tau}$. As usual, we identify $W(R, G, \{c_{\sigma,\tau}\})$ and $W(R, G, \{c'_{\sigma,\tau}\})$ when $c_{\sigma,\tau}$ and $c'_{\sigma,\tau}$ are cohomologous (in C). When $c_{\sigma,\tau} = 1$, the crossed product is called splitting. In this note, we shall deal with a division ring D as R, and when $S = \{a \in D | a^{\sigma} = a \text{ for all } \sigma \text{ in } G\}$, we suppose [D:S]=n. In this case, D/S is called a strictly Galois extension with a Galois group G([3], [4]). The purpose of this note is to discuss a splitting property of W by extending the base ring S as well as D, which is an analogy of the classical result of commutative case. We shall show that there exist a division ring D' such that $S \subseteq D' \subseteq D$ and a kind of (non-commutative) Kronecker product $D^* = D \otimes D'$ over S such that $W(D^*, G, \{c_{\sigma,\tau}\})$ becomes splitting. The construction of the Kronecker product seems very interesting to the author and an example will be given in the last section.

2. Let D be a division ring and x_1, \dots, x_m m indeterminates. A polynomial ring $D[x_1, \dots, x_m]$ is defined in a natural way, supposing commutativity of multiplication between elements of D and x_i and between x_i and x_j . The quotient division ring of $D[x_1, \dots, x_m]$ is called the rational function division ring, whose existence is almost clear when we imbed $D[x_1, \dots, x_m]$ into the formal power series division ring $D[x_1, \dots, x_m] = D[x_m]\{x_{m-1}\} \cdots \{x_1\}$ of x_1, \dots, x_m over D and take the

Received July 16, 1968