K. Hirata Nagoya Math. J. Vol. 35 (1969), 31-45

SEPARABLE EXTENSIONS AND CENTRALIZERS OF RINGS

KAZUHIKO HIRATA

We have introduced in [9] a type of separable extensions of a ring as a generalization of the notion of central separable algebras. Unfortunately it was unsuitable to call such extensions 'central' as Sugano pointed out in [15] (Example below Theorem 1.1). Some additional properties of such extensions were given in [15]. Especially Propositions 1. 3 and 1. 4 in [15] are interesting and suggested us to consider the commutor theory of separable extensions. Let Λ be a ring and Γ a subring of Λ . When $\Lambda \otimes_{\Gamma} \Lambda$ is a direct summand of a finite direct sum of Λ as a two-sided Λ -module we shall denote it by ${}_{\Lambda}\Lambda \otimes {}_{\Gamma}\Lambda_{\Lambda} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Lambda}$ and call Λ an *H*-separable extension of Γ (cf. [9] and [15]). Let Λ be a subring of Λ containing the center C of A and let Γ be the centralizer of Δ in $\Lambda, \Gamma = V_{\Lambda}(\Delta) = \Lambda^{4} =$ $\{\lambda \in \Lambda \mid \delta \lambda = \lambda \delta, \ \delta \in \Delta\}.$ If ${}_{\Lambda}\Lambda \otimes_{c} \Delta {}_{\Delta} < \oplus {}_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ and Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ and Λ is right Γ -finitely generated and projective. Conversely for such an *H*-separable extension Λ over Γ , if we set $\Lambda' = V_{\Lambda}(\Gamma)$, then $\Lambda \otimes_{c} \Lambda'_{\Lambda'} < \bigoplus_{\Lambda} (\Lambda \bigoplus \cdots$ $(\oplus \Lambda)_{A'}$ and Δ' is C-finitely generated and projective. In this way we can give a one to one correspondence between Γ 's and \varDelta 's. A more general situation than H-separable extensions is possible and is symmetric to each other. Let B and Γ be subrings of Λ such that $B \supset \Gamma$. Let $\Lambda = V_{\Lambda}(\Gamma)$ and $D = V_A(B)$. If ${}_BB \otimes_{\Gamma} \Lambda_A < \oplus {}_B(A \oplus \cdots \oplus A)_A$ and B is right Γ -finitely generated and projective then $_{A}A \otimes _{D}\Delta_{A} < \oplus_{A}(A \oplus \cdots \oplus A)_{A}$ and Δ is left Dfinitly generated and projective. Same considerations are possible for Hseparable subextensions. These are treated in §2, 3 and 4. §1 is a continuation of §1 in [9] and the results are applied to the following sections. In \$5 we give some notes on two-sided modules. It is well known that any finitly generated projective module over a commutative ring is a generator (completely faithful) if it is faithful. Let M be a two-sided module over a

Received May 6, 1968