K. Hirata

Nagoya Math. J.
Vol. 35 (1969), 31-45

SEPARABLE EXTENSIONS AND CENTRALIZERS OF RINGS

KAZUHIKO HIRATA

We have introduced in [9] a type of separable extensions of a ring as a generalization of the notion of central separable algebras. Unfortunately it was unsuitable to call such extensions 'central' as Sugano pointed out in [15] (Example below Theorem 1.1). Some additional properties of such extensions were given in [15]. Especially Propositions 1.3 and 1.4 in [15] are interesting and suggested us to consider the commutor theory of separable extensions. Let Λ be a ring and Γ a subring of Λ. When $\Lambda \otimes_{\Gamma} \Lambda$ is a direct summand of a finite direct sum of Λ as a two-sided Λ-module we shall denote it by $\Lambda \otimes_{\Gamma} \Lambda_{\Lambda}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and call Λ an H-separable extension of Γ (cf. [9] and [15]). Let Δ be a subring of Λ containing the center C of Λ and let Γ be the centralizer of Δ in $\Lambda, \Gamma=V_{\Lambda}(\Delta)=\Lambda^{4}=$ $\{\lambda \in \Lambda \mid \delta \lambda=\lambda \delta, \delta \in \Delta\}$. If $\Lambda \Lambda \otimes_{c} \Delta_{\Delta}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{\Delta}$ and Δ is C-finitely generated and projective then Λ is an H-separable extension of Γ and Λ is right Γ-finitely generated and projective. Conversely for such an H-separable extension Λ over Γ, if we set $\Delta^{\prime}=V_{\Lambda}(\Gamma)$, then ${ }_{\Lambda} \Lambda \otimes_{c} \Delta^{\prime} \Delta^{\prime}<\oplus{ }_{\Lambda}(\Lambda \oplus \cdots$ $\oplus \Lambda) \Delta^{\prime}$ and Δ^{\prime} is C-finitely generated and projective. In this way we can give a one to one correspondence between Γ 's and Δ 's. A more general situation than H-separable extensions is possible and is symmetric to each other. Let B and Γ be subrings of Λ such that $B \supset \Gamma$. Let $\Delta=V_{A}(\Gamma)$ and $D=V_{A}(B) . \quad$ If ${ }_{B} B \otimes_{\Gamma} \Lambda_{A}<\oplus_{B}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and B is right Γ-finitely generated and projective then $\Lambda_{\Lambda} \Lambda \otimes_{D} \Delta_{\Delta}<\oplus \oplus_{\Lambda}(\Lambda \oplus \cdots \oplus \Lambda)_{A}$ and Δ is left D finitly generated and projective. Same considerations are possible for H separable subextensions. These are treated in $\$ 2,3$ and 4.81 is a continuation of $\$ 1$ in [9] and the results are applied to the following sections. In 85 we give some notes on two-sided modules. It is well known that any finitly generated projective module over a commutative ring is a generator (completely faithful) if it is faithful. Let M be a two-sided module over a

