W.G. Vogt M.M. Eisen G.R. Buis Nagoya Math. J. Vol. 34 (1969), 149–151

CONTRACTION GROUPS AND EQUIVALENT NORMS*

WILLIAM G. VOGT MARTIN M. EISEN GABE R. BUISt

Using the notation in [1], the Lumer-Phillips theorem (3.1 of [2]) is refined to single parameter groups in real Banach space and real Hilbert space. The theory can be extended to complex spaces.

DEFINITION 1.

Let X be a B-space with norm $\|\cdot\|_1$ and let $[\cdot, \cdot]_1$ be a corresponding semi-scalar product on X. Then the semi-scalar product $[\cdot, \cdot]$ is said to be equivalent to $[\cdot, \cdot]_1$ on X iff $\|\cdot\|_1$ and $\|\cdot\|$ are equivalent norms on X.

THEOREM 1.

Let A be a linear operator with D(A) and R(A) both contained in a B-space $(X, \|\cdot\|_1)$ such that D(A) is dense in X. Then A generates a group $\{T_t; -\infty < t < \infty\}$ in X such that $\{T_t; t > 0\}$ is a negative contractive semi-group with respect to an equivalent norm $\|\cdot\|$ iff

(1)
$$-\delta \|x\|^2 < [Ax, x] < -\gamma \|x\|^2 \qquad (x \in D(A))$$

where $\infty > \delta > r > 0$ and $[\cdot, \cdot]$ is an equivalent scalar product consistent with $\|\cdot\|$, and

(2)
$$R(I(1-\tilde{\tau}) - A) = X \qquad R(I(1+\delta) + A) = X.$$

Proof.

The sufficiency of conditions (1) and (2) follows immediately from the results in Yosida [1], pp. 250-254.

Conversely suppose that A generates a group such that $||T_t|| < e^{-\beta t}$ $(t \ge 0)$ where $\beta > 0$. It is known that for a group $||T_t^{-1}|| < Me^{\alpha t}$, where

Received June 10, 1968.

Revised July 15, 1968.

^{*} This research was supported in part by the National Aeronautics and Space Administration under Grant No. NGR 39-011-039 with the University of Pittsburgh.

[†] Presently with TRW Systems Group, Redondo Beach, California, U.S.A.