A NOTE ON GALOIS COHOMOLOGY GROUPS OF ALGEBRAIC TORI

KAZUO AMANO

§1. Introduction

Let k be a complete field of characteristic 0 whose topology is defined by a discrete valuation and let T be an algebraic torus of dimension ddefined over k. As is well known, T has a splitting field K which is a finite Galois extension of k with Galois group \mathfrak{G} . For a ring R, denote by T_R the subgroup of R-rational points of T. Then T_K and $T_{\mathfrak{o}_K}$, \mathfrak{o}_K being a valuation ring of K, become \mathfrak{G} -modules in the usual manner.

In the present paper, we shall show some properties of \mathfrak{G} -modules T_{κ} and $T_{\mathfrak{o}_{\kappa}}$. Namely, in Section 2, we shall obtain Theorem 1 as an analogy to the results as is well known in the local fields. In Section 3, we shall consider the Galois cohomology groups of T_{κ} and $T_{\mathfrak{o}_{\kappa}}$ as \mathfrak{G} -modules [Theorem 2]. Analogous results in the case of number fields were obtained in [11] and [15]. In Section 4, we shall obtain the explicit structure of the Galois cohomology groups of $T_{\mathfrak{o}_{\kappa}}$ for the totally ramified extension of prime degree.

The auther wishes to express his heartfelt thanks to Prof. T. Kubota for his kind leading.

§2. Unramified extension

In this section, we suppose that the splitting field K is always an unramified extension of k. We denote by \mathfrak{u}_K (resp. \mathfrak{u}_k) the group of units of K (resp. k). For a unique prime divisor \mathfrak{P} (resp. \mathfrak{p}) of K, we set for the integer $r \geq 0$

$$\mathfrak{u}_{K}^{(r)} = \{ \alpha \in \mathfrak{u}_{K}, \ \alpha \equiv 1 \text{ mod. } \mathfrak{P}^{r} \}, \ \mathfrak{u}_{K}^{(0)} = \mathfrak{u}_{K},$$
$$\mathfrak{u}_{k}^{(r)} = \{ \alpha \in \mathfrak{u}_{k}, \ \alpha \equiv 1 \text{ mod. } \mathfrak{p}^{r} \}, \ \mathfrak{u}_{k}^{(0)} = \mathfrak{u}_{k},$$

and define $T_{\mathfrak{o}_K}^{(r)}$ by

Received May 30, 1968