K. Shiraiwa Nagoya Math. J. Vol. 33 (1968), 53–56

A NOTE ON TANGENTIAL EQUIVALENCES

KENICHI SHIRAIWA

The main objective of this paper is to prove the following theorem, which generalizes some results of [1], [2], [6]. Our theorem is also suggested by the work of Novikov [5].

THEOREM. Let M, M' be closed smooth 2n-manifolds of the same homotopy type. Let $\tau(M)$ and $\tau(M')$ be the tangent bundles of M and M'. Suppose we are given a homotopy equivalence $f: M \to M'$ such that the induced bundle $f^*\tau(M')$ is stably equivalent to $\tau(M)$. (cf. [4]). Then $f^*\tau(M')$ is actually equivalent to $\tau(M)$.

COROLLARY. Under the same assumption, M and M' have the same span, that is the maximal numbers of linearly independent vector fields on M and M' are equal. (cf. [1]).

Proof of the theorem. Let $M^{2^{n-1}}$ be the (2n-1)-skeleton of M. Set $\tau = \tau(M)$ and $\tau' = f^*\tau(M')$. Let $\tau | M^{2^{n-1}}$ and $\tau' | M^{2^{n-1}}$ be the restrictions of τ and τ' on $M^{2^{n-1}}$. Let O(k) be the orthogonal group of the k-dimensional euclidean space R^k . Then (O(2n + 1), O(2n)) is (2n - 1)-connected. By our assumption $\tau | M^{2^{n-1}}$ is equivalent to $\tau' | M^{2^{n-1}}$, and using the obstruction theory we have an equivalence $\alpha: \tau | M^{2^{n-1}} \cong \tau' | M^{2^{n-1}}$ which can be extended to a stable equivalence of $\tau \oplus 1 \cong \tau' \oplus 1$ over M, where 1 is the trivial line bundle over M.

Let $i: O(2n) \rightarrow O(2n + 1)$ be the canonical inclusion. Then we have the following exact sequence

$$O \to \operatorname{Ker} \ i_* \xrightarrow{j} \pi_{2n-1}(O(2n)) \xrightarrow{i^*} \pi_{2n-1}(O(2n+1)) \to O,$$

where Ker $i_* \approx Z$ (the additive group of integers) (cf. [3]). Let c be the obstruction cocycle for extending α to an equivalence $\tau \approx \tau'$ over the whole M. (The coefficients group $\pi_{2n-1}(O(2n))$ of this cocycle is twisted if M is non-orientable, and the operation of $\pi_1(M)$ is given in [7] § 23). Then, by our previous remark on α , the value $c(\sigma_i^{2n})$ of c on each simplex σ_i^{2n} of M

Received January 18, 1968.