APPROXIMATION OF UNIFORM TRANSPORT PROCESS ON A FINITE INTERVAL TO BROWNIAN MOTION

TOITSU WATANABE

§ 1. Introduction.

Let us consider a finite closed interval $[-a, a]$ which will be thought of as being a medium capable of transporting particles. These particles may move only to the right or to the left with the constant speed c, and each particle changes the moving-direction during the time Δ with probability $k \Delta+o(\Delta)$. If a right- (left-) moving particle hits the boundary point $a(-a)$, then either it turns to the left (right) with probability $1-q_{1}\left(1-q_{-1}\right)$ or dies with probability $q_{1}\left(q_{-1}\right)$. The particle, changed the moving-direction, starts afresh from that position. Now, let $x(t)$ be the coordinate of the particle at time t and let $\theta(t)$ be 1 or -1 according as the moving-direction at time t is right or left. Then $\mathbf{X}(t)=(x(t), \theta(t))$ can be considered as a Markov process over the state space $\boldsymbol{S}=\{(x, \theta)$ $-a \leqq x \leqq a, \theta= \pm 1\}$. For short, we shall call it a uniform transport process over the interval $[-a, a]$. we shall give the precise definition in $\S 2$.

Let \boldsymbol{T}_{t} be the semigroup corresponding to the Markov process $\boldsymbol{X}(t)$ $=(x(t), \theta(t))$. Then $u(t, x, \theta)=\boldsymbol{T}_{t} f(x, \theta)$ will be the solution of the following differential equation:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} u(t, x, 1)=c \frac{\partial}{\partial x} u(t, x, 1)-k u(t, x, 1)+k u(t, x,-1) \tag{T}\\
\frac{\partial}{\partial t} u(t, x,-1)=-c \frac{\partial}{\partial x} u(t, x,-1)-k u(t, x,-1)+k u(t, x, 1) \\
u(t, a, 1)=\left(1-q_{1}\right) u(t, a,-1) \\
u(t,-a,-1)=\left(1-q_{-1}\right) u(t, a, 1) \\
u(t, x, \theta) \rightarrow f(x, \theta) \text { as } t \rightarrow 0
\end{array}\right.
$$

At this stage, choose constants c, k, q_{1}, q_{-1} so that

$$
\begin{equation*}
c^{2} / k=1 \tag{1}
\end{equation*}
$$

[^0]
[^0]: Received August 31, 1967.

