ON OSCULATING SYSTEMS OF DIFFERENTIAL EQUATIONS OF TYPE (N, 1, 2)

HISASI MORIKAWA

The main subject in the present article has the origin in the following quite primitive question: Linear systems of ordinary differential equations form a nice family. Then, from the projective point of view, what does correspond to linear systems?

An osculating system of ordinary differential equations of type (N, 1, 2) means a system of differential equations

(*) det
$$\begin{pmatrix} y_{\alpha_0}, & y_{\alpha_1} \\ \frac{dy_{\alpha_0}}{du}, & \frac{dy_{\alpha_1}}{du} \end{pmatrix} = F_{\alpha_0, \alpha_1}(u, y_0, \ldots, y_N) \quad (0 \le \alpha_0 < \alpha_1 \le N)$$

such that F_{α_0, α_1} $(0 \le \alpha_0 < \alpha_1 \le N)$ are quadratic forms in y_0, \ldots, y_N . If a vector $(\varphi_0, \ldots, \varphi_N)$ is a solution of (*), then for any holomorphic function φ the vector $(\varphi\varphi_0, \ldots, \varphi\varphi_N)$ is also a solution (*). Hence the map: $u \rightarrow$ $(\varphi_0(u), \ldots, \varphi_N(u))$ into the projective N-space P_N has a nice meaning. We shall call such a map a projective solution of (*). From the projective point of view, roughly speaking, the system (*) is equivalent to the following systems

(**)
$$\frac{d \frac{y_{\alpha}}{y_{\beta}}}{du} = F_{a,\beta}(u, y_0, \ldots, y_N) \quad (0 \leq \alpha, \beta \leq N)$$

where $F_{\alpha,\beta} + F_{\beta,\alpha} = 0$ $(0 \le \alpha, \beta \le N)$. The initial variety $W_{u_0}^{(F)}$ at a regular point u_0 for (*) means the set of all the point x in the projective N-space P_N such that there exists a holomorphic projective solution of (*) with the initial point x at $u = u_0$.

Then the following comparative table shows that osculating systems of type (N, 1, 2) together with their projective solutions give an answer to our primitive question.

Received January 30, 1967.