ON OSCULATING SYSTEMS OF DIFFERENTIAL
EQUATIONS OF TYPE (N, 1, 2)

HISASI MORIKAWA

The main subject in the present article has the origin in the following
quite primitive question: Linear systems of ordinary differential equations form a
nice family. Then, from the projective point of view, what does correspond to linear
systems?

An osculating system of ordinary differential equations of type (N,1,2)
means a system of differential equations
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such that Fe, 4 (0 < ay< a; < N) are quadratic forms in y,, ..., yy. If
a vector (¢,, ..., ¢y) is a solution of (*), then for any holomorphic function
¢ the vector (¢¢,, . .., ¢py) is also a solution (x¥). Hence the map: » —
(po(u), . . ., on(u)) into the projective N-space Py has a nice meaning. We
shall call such a map a projective solution of (¥). From the projective point
of view, roughly speaking, the system () is equivalent to the following systems
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where Fop+ Fpe =0 (0<a B<N). The initial variety Wi at a regular
point #, for (*) means the set of all the point x in the projective N —space Py
such that there exists a holomorphic projective solution of () with the initial
point x at u = u,.

Then the following comparative table shows that osculating systems of
type (N,1,2) together with their projective solutions give an answer to our
primitive question.
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