ON A THEOREM OF RAMANAN

HIROSHI UMEMURA

Let G be a simply connected Lie group and P a parabolic subgroup without simple factor. A finite dimensional irreducible representation of P defines a homogeneous vector bundle E over the homogeneous space G / P. Ramanan [2] proved that, if the second Betti number b_{2} of G / P is 1 , the inequality in Definition (2.3) holds provided F is locally free. Since the notion of the H-stability was not established at that time, it was inevitable to assume that $b_{2}=1$ and F is locally free. In this paper, pushing Ramanan's idea through, we prove that E is H-stable for any ample line bundle H. Our proof as well as Ramanan's depends on the Borel-Weil theorem. If we recall that the Borel-Weil theorem fails in characteristic $p>0$, it is interesting to ask whether our theorem remains true in characteristic $p>0$.

§ 1. The Borel-Weil theorem

Let us review the Borel-Weil theorem on which the proof of our theorem heavily depends. We use the notation of Kostant [1] with slight modifications. For example, we shall denote by \mathfrak{p} a parabolic Lie subalgebra which Kostant denotes by \mathfrak{u}. In this section all the results are stated without proofs. The details are found in the paper of Kostant cited above.

Let g be a complex semi-simple Lie algebra and let (g) be the CartanKilling form on g namely $(x, y)=\operatorname{tr}(a d x \circ a d y)$ for $x, y \in \mathfrak{g}$.

A compact form of g is a real Lie subalgebra \mathfrak{f} of g satisfying the following conditions:
(i) $\mathfrak{g}=\mathfrak{f}+i \mathfrak{f}$ is the direct sum of real Lie algebra.
(ii) the Cartan-Killing form is negative definite on f. We fix a compact form once and for all. Let $\mathfrak{q}=i \mathfrak{l}$ so that the restriction of the CartanKilling form to \mathfrak{q} is positive definite. Evidently we have a real decom-

