K. Kato Nagoya Math. J. Vol. 69 (1978), 121-129

STOCHASTIC STABILITY OF ANOSOV DIFFEOMORPHISMS

KAZUHISA KATO

§0. Introduction

R. Bowen [1] introduced the notion of pseudo-orbit for a homeomorphism f of a metric space X as follows: A (double) sequence $\{x_i\}_{i \in \mathbb{Z}}$ of points x_i in X is called a δ -pseudo-orbit of f iff

$$d(fx_i, x_{i+1}) \leq \delta$$

for every $i \in \mathbb{Z}$, where d denotes the metric in X. We say f is stochastically stable if for every $\varepsilon > 0$ there exists $\delta > 0$ such that every δ pseudo-orbit $\{x_i\}_{i \in \mathbb{Z}}$ of f is ε -traced by some $x \in X$, i.e.,

 $d(f^i x, x_i) \leq \varepsilon$

for every $i \in \mathbb{Z}$. He proved in [1] that if a compact hyperbolic set Λ for a diffeomorphism f of a compact manifold M has local product structure then the restriction $f \mid \Lambda$ of f to Λ is stochastically stable, using stable and unstable manifolds.

In this paper we prove first that an Anosov diffeomorphism f of a compact manifold M is topologically stable, in the set of all continuous maps of M into M, in a sense (Theorem 1). Next, making use of Theorem 1 we give another proof for Bowen's result, in the case of f an Anosov diffeomorphism (Theorem 2). The idea of this paper is inspired by a result of A. Morimoto [2], which says that a topologically stable homeomorphism f of a manifold M with dim $M \geq 3$ is stochastically stable. The method of the proof follows that of P. Walters [3].

The author would like to express his gratitude to Professor A. Morimoto for several useful conversations and his advices.

§1. Preparatory lemmas

M will always denote a compact C^{∞} manifold without boundary.

Received February 18, 1977.