Y. Kitaoka Nagoya Math. J. Vol. 69 (1978), 117-120

REPRESENTATIONS OF QUADRATIC FORMS

YOSHIYUKI KITAOKA

0. We have shown in [1]

THEOREM A. Let L be a lattice in a regular quadratic space U over Q; then L has a submodule M satisfying the following conditions 1), 2):

1) $dM \neq 0$, rank $M = \operatorname{rank} L - 1$, and M is a direct summand of L as a module.

2) Let L' be a lattice in some regular quadratic space U' over Q satisfying dL' = dL, rank $L' = \operatorname{rank} L$, $t_p(L') \ge t_p(L)$ for any prime p. If there is an isometry α from M into L' such that $\alpha(M)$ is a direct summand of L' as a module, then L' is isometric to L.

Our aim is to remove such a restriction in 2) that $\alpha(M)$ is a direct summand of L' as a module:

THEOREM B. Let L be a lattice in a regular quadratic space U over Q; then L has a submodule M with rank $M = \operatorname{rank} L - 1$, $dM \neq 0$ which is a direct summand of L as a module and satisfies

(*) let L' be a lattice in some regular quadratic space U' over Q satisfying dL' = dL, rank $L' = \operatorname{rank} L$, $t_p(L') \ge t_p(L)$ for any prime p; if there is an isometry α from M into L', then L' is isometric to L.

1. Notations and some lemmas

We denote by Q, Z, Q_p and Z_p the rational number field, the ring of rational integers, the *p*-adic completion of Q, and the *p*-adic completion of Z, respectively. For a quadratic space U we denote Q(x), B(x, y) the quadratic form and the bilinear form associated with U(2B(x, y))= Q(x + y) - Q(x) - Q(y)), and for a lattice L in U dL stands for the discriminant of L. For two ordered sets $(a_1, a_2, \dots, a_n), (b_1, b_2, \dots, b_n)$, we define the order $(a_1, a_2, \dots, a_n) \leq (b_1, b_2, \dots, b_n)$ by either $a_i = b_i$ for i < k and $a_k < b_k$ for some $k \leq n$ or $a_i = b_i$ for any i.

Received February 18, 1977.