SCALAR EXTENSION OF QUADRATIC LATTICES

YOSHIYUKI KITAOKA

Let E / F be a finite extension of algebraic number fields, O_{E}, O_{F} the maximal orders of E, F respectively. A classical theorem of Springer [6] asserts that an anisotropic quadratic space over F remains anisotropic over E if the degree $[E: F]$ is odd. From this follows that regular quadratic spaces U, V over F are isometric if they are isometric over E and $[E: F]$ is odd. Earnest and Hsia treated similar problems for the spinor genera [2,3]. We are concerned with the quadratic lattices. Let L, M be quadratic lattices over O_{F} in regular quadratic spaces U, V over F respectively. Assume
(*) there is an isometry σ from $O_{E} L$ onto $O_{E} M$, where $O_{E} L, O_{E} M$ denote the tensor products of O_{E} and L, M over O_{F} respectively. Then our question is whether the assumption implies $\sigma(L)=M$ or not. The affirmative answer would imply that L, M are already isometric over O_{F}. Obviously the answer is negative if the quadratic space $E U$ ($\cong E V$) is indefinite. Even if we suppose that $E U$ is definite, the answer is still negative in general. However there are many cases in which the answer is affirmative if $E U$ is definite. We give such examples in this paper.

Through this paper $Q(x), B(x, y)$ denote quadratic forms and corresponding bilinear forms $(2 B(x, y)=Q(x+y)-Q(x)-Q(y))$. Notations and terminologies will be those of O'Meara [5].

Theorem 1. Let m be a natural number ≥ 2, and E be a totally real algebraic number field with degree m, and assume that L, M be definite quadratic lattices over the ring \boldsymbol{Z} of rational integers. Then the assumption*) (*) implies $\sigma(L)=M$ if E does not intersect with a finite set of (explicitely determined) algebraic integers which are not dependent on L, M, but on m.

Theorem 2. Let E be totally real, and L, M be definite quadratic Received May 20, 1976.
${ }^{*)}$ In Theorem 1, 2, and $3 F$ is the field Q of rational numbers.

