ON PRESERVING THE KOBAYASHI PSEUDODISTANCE

L. ANDREW CAMPBELL AND ROY H. OGAWA

§ 0.

If X is a complex space, the Kobayashi pseudo-distance d_X is an intrinsic pseudometric on X defined as follows. If p and q are points of X, a chain α from p to q consists of intermediate points p_0, \dots, p_r with $p_0 = p$ and $p_r = q$ together with maps f_i of the unit disc D = $\{z \in C^1 | |z| < 1\}$ into X and points a_i and b_i in D such that $f_i(a_i) = p_{i-1}$ and $f_i(b_i) = p_i$ for $i = 1, \dots, r$. If $d_D(a, b)$ denotes the hyperbolic distance between the points a and b in the unit disc, then the length of the chain α is defined as $|\alpha| = d_D(a_1, b_1) + d_D(a_2, b_2) + \cdots + d_D(a_r, b_r)$. The pseudo-distance between p and q is then defined as the infimum of the lengths of all chaini from p to $q: d_x = \inf \{ |\alpha| | \alpha \text{ a chain from } p \text{ to } q \}.$ It is easy to establish that $d_x(p,q)$ is jointly continuous in p and q and that holomorphic maps are distance decreasing—i.e. if $f: X' \to X$ is holomorphic and f(p') = p, f(q') = q then $d_{\mathcal{X}}(p,q) \leq d_{\mathcal{X}'}(p',q')$. If $d_{\mathcal{X}}$ is an actual distance—i.e. if $d_x(p,q) \neq 0$ for $p \neq q$ —then X is said to be hyperbolic and in that case the metric topology induced by d_x coincides with the original topology of X ([1]). A general reference for this subject is Kobayashi's book [4].

If A is a closed subset of X, then the inclusion map $X - A \to X$ is holomorphic, so that $d_X(p,q) \leq d_{X-A}(p,q)$ for p and q not in A. Removing an analytic set of codimension 1 often changes the pseudo-distance radically. For instance, the pseudo-distance on $C^* = \{z \in C | z \neq 0\}$ is identically zero, but, if we remove a single point from C^* , what is left is a hyperbolic space. The same sort of phenomenon generally does not occur if A is an analytic set of codimension at least 2. For instance, Kobayashi proves ([4]) that if A is closed and nowhere dense in some hyperplane section of D^n (the unit polydisc in *n*-space), then removing

Received June 5, 1974

Revised September 10, 1974