S. Endo and T. Miyata Nagoya Math. J. Vol. 56 (1974), 85-104

ON A CLASSIFICATION OF THE FUNCTION FIELDS OF ALGEBRAIC TORI

SHIZUO ENDO AND TAKEHIKO MIYATA

Let Π be a finite group and denote by M_{Π} the class of all (finitely generated Z-free) Π -modules. In the previous paper [3] we defined an equivalence relation in M_{Π} and constructed the abelian semigroup $T(\Pi)$ by giving an addition to the set of all equivalence classes in M_{Π} . The investigation of the semigroup $T(\Pi)$ seems interesting and important, because this gives a classification of the function fields of algebraic tori defined over a field k which split over a Galois extension of k with group Π .

The purpose of this paper is to obtain information on the structure of the semigroup $T(\Pi)$.

We will recall the definitions given in [2] and [3]. A Π -module is called a permutation Π -module if it can be expressed as a direct sum of $\{Z\Pi/\Pi_i\}$ where each Π_i is a subgroup of Π . Further a Π -module M is called a quasi-permutation Π -module if there exists an exact sequence $0 \to M \to S \to S' \to 0$ where S and S' are permutation Π -modules. The dual module $\operatorname{Hom}_Z(M, Z)$ of a Π -module M is denoted by M^* . The augmentation ideal of $Z\Pi$ is denoted by I_{Π} and the dual module I_{Π}^* of I_{Π} is called the Chevalley's module of Π ([1], [2]).

Let k be a field. Let K be a Galois extension of k with group $\cong \Pi$ and let M be a Π -module with a Z-free basis $\{u_1, u_2, \dots, u_n\}$. Define the action on the rational function field $K(X_1, X_2, \dots, X_n)$ with n variables X_1, X_2, \dots, X_n over K by putting, for each $\sigma \in \Pi$ and $1 \leq i \leq n$, $\sigma(X_i) =$ $\prod_{j=1}^n X_j^{m_{ij}}$ when $\sigma \cdot u_i = \sum_{j=1}^n m_{ij}u_j$, $m_{ij} \in Z$, and denote by K(M) $K(X_1, X_2, \dots, X_n)$ with this action of Π . It is well known ([7]) that there is a duality between the category of all algebraic tori defined over k which split over K and the category of all Π -modules. In fact, if T is an algebraic torus defined over k which splits over K, then the character

Received January 17, 1974.