M. Koike Nagoya Math. J. Vol. 99 (1985), 147–157

MATHIEU GROUP M₂₄ AND MODULAR FORMS

MASAO KOIKE

§0. Introduction

In [6], Mason reported some connections between sporadic simple group M_{24} and certain cusp forms which appear in the 'denominator' of Thompson series assigned to Fisher-Griess's group F_1 . In this paper, we discuss the 'numerator' of these Thompson series.

We state our result precisely. Since M_{24} is a subgroup of the symmetric group S_{24} of degree 24, we can write for each $m \in M_{24}$,

$$m=(n_1)(n_2)\cdots(n_s)\;,\qquad n_1\geqq\cdots\geqq n_s\geqq 1\;,$$

to mean that *m* is a product of cycle of length n_i , $1 \leq i \leq s$. To each $m = (n_1) \cdots (n_s)$, we associate modular forms $\eta_m(z)$ and $\vartheta_m(z)$ as follows; let

$$\eta_m(z) = \eta(n_1 z) \cdots \eta(n_s z)$$
 ,

where $\eta(z)$ is the Dedekind η -function

$$\eta(z)=q^{\scriptscriptstyle 1/24}\prod\limits_{n=1}^{\infty}\left(1-q^n
ight)$$
 ,

where $q = \exp(2\pi\sqrt{-1}z)$ and $z \in H = \{z \in C | \text{Im } z > 0\}$. Then, in [6], Mason showed that $\eta_m(z)$ is a cusp form of weight s/2 on $\Gamma_0(n_1n_s)$ with some character ε_m and is also a common eigenfunction of all Hecke operators, (see also [3]).

On the other hand, it is well-known that M_{24} acts on the Leech lattice L as isometries. To each $m \in M_{24}$, put

$$L^m = \{x \in L \,|\, m \cdot x = x\}$$
.

Then L^m is an even integral, positive definite quadratic lattice of rank s. Let $\vartheta_m(z)$ denote the theta function of L^m :

Received June 15, 1984.