Y. Teranishi Nagoya Math. J. Vol. 98 (1985), 139-156

RELATIVE INVARIANTS AND *b*-FUNCTIONS OF PREHOMOGENEOUS VECTOR SPACES

 $(G \times GL(d_1, \cdots, d_r), \tilde{\rho}_1, M(n, C))$

YASUO TERANISHI

Introduction

Let G be a connected linear algebraic group, ρ a rational representation of G on a finite-dimensional vector space V, all defined over C.

A polynomial f(x) on V is called a relative invariant, if there exists a rational character $\chi : G \to C^{\times}$ satisfying

 $f(\rho(g) \cdot x) = \chi(g)f(x)$, for any $g \in G$ and $x \in V$.

The triplet (G, ρ, V) is called a prehomogeneous vector space (abbrev. P.V.), if there exists a proper algebraic subset S of V such that V - S is a single G-orbit. The algebraic set S is called the singular set of (G, ρ, V) and any point in V - S is called a generic point of (G, ρ, V) .

Let $GL(d_1, \dots, d_r)$ be a parabolic subgroup of the general linear group GL(n, C) defined by (1.1) in Section 1, $\rho: G \to GL(n, C)$ be an *n*-dimensional representation of G. In this paper, we shall be concerned with the triplet $(G \times GL(d_1, \dots, d_r), \tilde{\rho}_1, M(n, C))$, where $\tilde{\rho}_1$ is defined by

 $\rho_1(g, a)x = \rho(g)xa^{-1} \quad ((g, a) \in G \times GL(d_1, \cdots, d_r), \ x \in M(n, C)).$

Assume that $(G \times GL(d_1, \dots, d_r), \tilde{\rho}_1, M(n, C))$ is a P.V. We shall introduce the *b*-function of $(G \times GL(d_1, \dots, d_r), \tilde{\rho}_1, M(n, C))$, after M. Sato, in Section 3. Theorem 3.1 gives an explicit form of the *b*-function. In Section 4, we shall be concerned with triplets $\{(G \times B_n, \tilde{\rho}_1, M(n, C))\}$ where *G* is a semi-simple connected linear algebraic group, B_n is the upper triangular group and ρ is an irreducible representation on an *n*-dimensional vector space *V*. We shall determine all prehomogeneous vector space $\{(G \times B_n, \tilde{\rho}_1, M(n, C)\}$, and construct their relative invariants.

Received May 7, 1984.