CUSP FORMS OF WEIGHT ONE, QUARTIC RECIPROCITY AND ELLIPTIC CURVES

NOBURO ISHII

§ 1. Introduction

Let m be a non-square positive integer. Let K be the Galois extension over the rational number field Q generated by $\sqrt{-1}$ and $\sqrt[4]{m}$. Then its Galois group over Q is the dihedral group D_4 of order 8 and has the unique two-dimensional irreducible complex representation ψ . In view of the theory of Hecke-Weil-Langlands, we know that ψ defines a cusp form of weight one (cf. Serre [6]). This cusp form is denoted by $\theta(\tau, K)$. The present paper consists of two parts. In the first part (§ 2 and § 3), we shall study the number theoretic properties of $\theta(\tau, K)$ deduced from K. We show firstly that $\theta(\tau, K)$ has three expressions by definite or indefinite theta series. We may consider these expressions of $\theta(\tau, K)$ as the identities between cusp forms of weight one. This point of view gives a number theoretic explanation for the identities between cusp forms ([3]). Further we show that the Fourier coefficients of the cusp form $\theta(\tau, K)$ determine the decomposition law of the extension K/Q and especially the quartic residuacity of m. These results are obtained from that K has three quadratic subfields over which K is abelian. In particular, for the case m is prime, we write down the above expressions of $\theta(\tau, K)$ explicitly by determining the class group corresponding to K in each quadratic subfield. We deduce from this a special case of quartic reciprocity law. part we also establish the "higher reciprocity law" of the defining equation of K.

Let E be the elliptic curve defined by the equation: $y^2 = x^3 + 4mx$. Then K is generated over Q by certain torsion points of E. The purpose of the second part is to study the property of $\theta(\tau, K)$ related to E through K. Let $\theta(\tau, E)$ denote the inverse Mellin transform of the L-function of E. Then $\theta(\tau, E)$ is a cusp form of weight two (cf. Shimura [8]). In

Received April 13, 1984.