M. Koike Nagoya Math. J. Vol. 98 (1985), 109-115

HIGHER RECIPROCITY LAW, MODULAR FORMS OF WEIGHT 1 AND ELLIPTIC CURVES

MASAO KOIKE

§0. Introduction

In this paper, we study higher reciprocity law of irreducible polynomials f(x) over Q of degree 3, especially, its close connection with elliptic curves rational over Q and cusp forms of weight 1. These topics were already studied separately in a special example by Chowla-Cowles [1] and Hiramatsu [2]. Here we bring these objects into unity.

Let

 \mathscr{C}_0 = the set of number fields K over Q such that

- (1) K is a Galois extension over Q with Gal $(K/Q) \cong S_3$, the symmetric group of degree 3,
- (2) K contains an imaginary quadratic field k.

For any K in \mathscr{C}_0 , we can associate three other objects: (1) f(x): irreducible polynomials over Q of degree 3, (2) $F(\tau)$: cusp forms of weight 1, (3) E: elliptic curves rational over Q; let

- $\mathscr{C}_1 =$ the set of all irreducible polynomials f(x) over Q of degree 3 whose splitting field K_f over Q belongs to \mathscr{C}_0 .
- $\mathscr{C}_2 =$ the set of all normalized cusp forms $F(\tau)$ of weight 1 on $\Gamma_0(N)$ whose Mellin transform is *L*-function with an ideal character χ of degree 3 of imaginary quadratic field k and the abelian extension K_F over k which corresponds to the kernel of χ belongs to \mathscr{C}_0 .
- $\mathscr{C}_{\mathfrak{z}} =$ the set of all elliptic curves E rational over Q such that the field $E_{\mathfrak{z}}$ generated by coordinates of 2-division points on E belongs to $\mathscr{C}_{\mathfrak{g}}$.

Received March 17, 1984.