Y. Teranishi Nagoya Math. J. Vol. 95 (1984), 137-161

THE VARIATIONAL THEORY OF HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

YASUO TERANISHI

§1. Introduction

In his paper [2], [3], D. A. Hejhal investigated the variational theory of linear polynomic functions. In this paper we are concerned with the variational theory of higher-order differential equations. To be more precise, consider a compact Riemann surface having genus g > 1. As is well known, we can choose a projective coordinate covering $\mathfrak{A} = (U_a, z_a)$. Fix this coordinate covering of X. We shall be concerned with linear ordinary differential operators of order n defined in each projective coordinate open set U_a

(1.1)
$$L_{n,\alpha}(P_{\alpha}|z_{\alpha}) = \left(\frac{d}{dz_{\alpha}}\right)^{n} + \sum_{\ell=1}^{n} {n \choose \ell} P_{n,\alpha}(z_{\alpha}) \left(\frac{d}{dz_{\alpha}}\right)^{n-\ell}$$

where coefficients $P_{1,a}(z_a), \dots, p_{n,a}(z_a)$ are holomorphic in U_a . Differential operators $\{L_{n,a}(P_a | z_a)\}$ are called a semi-canonical form if $P_{1,a}(z_a) = 0$ for all α .

Let $\lambda \in H^1(X, \mathcal{O}_x)$ be a complex line bundle on X. Differential operators $\{L_{\alpha,\alpha}(P_{\alpha}|z_{\alpha})\}$ are called λ -related if in each intersection $U_{\alpha} \cap U_{\beta}$

(1.2)
$$L_{n,\alpha}(P_{\alpha}|z_{\alpha})y = \left(\frac{dz_{\beta}}{dz_{\alpha}}\right)^{n}\lambda_{\alpha\beta}(z)^{-1}L_{n,\beta}(P_{\beta}|z_{\beta})\lambda_{\alpha\beta}(z_{\beta})y.$$

We shall prove an analogous theorem of the Laguerre-Forsyth's basic differential invariants.

THEOREM 1.1. Let $\{L_{n,\alpha}(P_{\alpha}|z_{\alpha})\}$ be a λ -related semi-canonical form, then

$$(\theta_{m,\alpha}(\boldsymbol{z}_{\alpha})) \in \boldsymbol{\Gamma}(\mathfrak{A}, \mathcal{O}(\kappa^{m})) \qquad (m = 2, 3, \cdots, n)$$

where $\theta_{m,a}(z_a)$ is holomorphic function in U_a defined by:

$$heta_{m,lpha}(z_{lpha}) = rac{1}{2} \sum_{k=0}^{m-2} (-1)^k rac{(m-2)! \, m! \, (2m-k-2)!}{(m-k-1)! \, (m-k)! \, (2m-3)! \, k! !} \Big(rac{d}{dz_{lpha}} \Big)^k P_{m-k,lpha}(z_{lpha}) \, .$$

Received August 19, 1983.