H. Kaneta Nagoya Math. J. Vol. 94 (1984), 61-73

THE INVARIANT POLYNOMIAL ALGEBRAS FOR THE GROUPS ISL(n) AND ISp(n)

HITOSHI KANETA

§0. Main theorems

This paper is a continuation to the previous one [3]. We shall show that, for the inhomogeneous linear group ISL(n + 1, R) (resp. ISp(n, R)), the coadjoint invariant polynomial algebra is generated by one (resp. n) algebraically independent element. We shall state our results more precisely.

(i) $ISL(n + 1, R), (n \ge 1).$

We can consider the following vector space \mathfrak{F}_n to be a subspace of the dual space realized as in Section 1 of the Lie algebra of ISL(n + 1, R);

((0			0	0))
$\mathfrak{H}_n = \left\{ \begin{array}{c} \\ \end{array} \right.$	۱ · .		0	:	:	
	y_{21}	۰.		:	:	B.
	<u> </u>		•.	:	0	
		\dot{y}_{n+1}	• + 1, n	ò	y_{n+1}	\parallel

Let $t = (\prod_{k=1}^{n} y_{k+1,k}^k) y_{n+1}^{n+1}$ be a polynomial function on \mathfrak{G}_n . Denote by \mathscr{I}_n the *C*-algebra of the coadjoint invariant polynomial functions on the dual space of the Lie algebra of ISL(n + 1, R).

THEOREM 1. The restriction map of \mathscr{I}_n into the set of polynomials on \mathfrak{H}_n is an injective algebra-homomorphism, whose image is C[t].

(ii) $ISp(n, \mathbf{R}) \ (n \ge 1)$.

In this case we can consider the following vector space \mathfrak{F}_n to be a subspace of the dual space realized as in Section 2 of the Lie algebra of ISp(n, R);

Received September 2, 1982.