H. Saito Nagoya Math. J. Vol. 94 (1984), 1-41

THE HODGE COHOMOLOGY AND CUBIC EQUIVALENCES

HIROSHI SAITO

In 1969, Mumford [8] proved that, for a complete non-singular algebraic surface F over the complex number field C, the dimension of the Chow group of zero-cycles on F is infinite if the geometric genus of F is positive. To this end, he defined a regular 2-form η_f on a non-singular variety S for a regular 2-form η on F and for a morphism $f: S \to S^n F$, where $S^n F$ is the *n*-th symmetric product of F, and he showed that η_f vanishes if all 0-cycles f(s), $s \in S$, are rationally equivalent. Roitman [9] later generalized this to a higher dimensional smooth projective variety V. For $\omega \in H^{0}(V, \Omega_{V}^{q})$, he has defined $\omega_{n} \in H^{0}(S^{n}V, \Omega^{q})$ and proved that ω_{n} has the following property: if $f, g: S \to S^n V$ are morphisms such that the zero cycles f(s) and g(s) are rationally equivalent for every $s \in S$, then $f^*\omega_n = g^*\omega_n$. We may say this property, roughly, like this: $f^*\omega_n$ cannot distinguish the rational equivalence relation. The rational equivalence is the finest equivalence relation among the adequate equivalence relations (cf. [12]). We can therefore pose the problem: which equivalence relation can $f^*\omega_n$ distinguish and which one can $f^*\omega_n$ not?

On the other hand, Samuel has defined the cubic equivalences in [12]. Consider an algebraic family of cycles on a smooth projective variety V over an algebraically closed field k, parametrized by a smooth variety S. We can regard this family as a "function" on S with values in the set of cycles on V. A cycle algebraically equivalent to zero can be considered as the difference of values at two points for an appropriate "function" on a smooth projective curve. We shall assume that the parameter space S is a product of two curves $C_1 \times C_2$. Then we can define a difference of the second order: take two points $a_i^{(0)}$ and $a_i^{(1)}$ on C_i , i = 1, 2, respectively, and form a difference of values at $(a_1^{(0)}, a_2^{(0)})$ and $(a_1^{(1)}, a_2^{(0)})$. We also form a difference between $(a_1^{(0)}, a_2^{(1)})$ and $(a_1^{(1)}, a_2^{(0)})$. The difference of the second order is the difference of these two differences.

Received January 29, 1981.

Revised March 16, 1981.