F. Momose Nagoya Math. J. Vol. 91 (1983), 19-36

GALOIS ACTION ON SOME IDEAL SECTION POINTS OF THE ABELIAN VARIETY ASSOCIATED WITH A MODULAR FORM AND ITS APPLICATION

FUMIYUKI MOMOSE

Introduction

For an integer N, let $X_1(N)$ be the modular curve defined over Q which corresponds to the modular group $\Gamma_1(N)$. To each primitive cusp form $f = \sum a_m q^m$, $a_1 = 1$, (= normalized new form in the sense of [1]) on $\Gamma_1(N)$ of weight 2, there corresponds a factor J_f of the jacobian variety of $X_1(N)$ (cf. Shimura [19]). Shimura [20] and Ohta [11] etc. investigated the Galois action on some ideal section points of J_{i} . They treated the case when f is a primitive cusp form on $\Gamma_1(l)$ with the neben typus character $\left(\frac{l}{l}\right)$ for a prime number $l, l \equiv 1 \mod 4$. We here treat the forms on $\Gamma_0(l^n)$ (*i.e.*, the Haupt form) for a prime number $l \neq 2$. Put $K_{\scriptscriptstyle f} = {\it Q}(a_{\scriptscriptstyle m} \, | \, 1 \leq m \in Z)$ and $\delta_{\scriptscriptstyle f}$ be the ideal of the ring of integers ${\mathscr O}$ of K_f generated by a_q for all primes q such that $\left(\frac{\pm l}{q}\right) = -1$. Here, the sign \pm is chosen so that $\pm l \equiv 1 \mod 4$. When a form f is associated with a Grössen-character of an imaginary quadratic field (cf. [18]), we say that f has C.M. or f is a form with C.M. One of the results is the following, which was conjectured in Saito [17]:

PROPOSITION (cf. (1.10), (1.16)). Let f be a primitive cusp form on $\Gamma_0(l^n)$ of weight 2 for a prime number $l, l \equiv -1 \mod 4$. Assume that there exists a prime \mathfrak{P} of K_f which divides δ_f but not divide 2l. Then, there exists a primitive cusp form Θ with C.M. on $\Gamma_0(l^n)$ of weight 2 such that

 $f\equiv\Theta \mod \overline{\mathfrak{P}}$,

where $\overline{\mathfrak{P}}$ is an extension of \mathfrak{P} to $\overline{\mathbf{Q}}$. Further, if $\mathfrak{P}_{\mathfrak{f}}(l-1) \cdot l$, f and Θ belong to the same direct factor in Saito's decomposition of the space $S_2^{\circ}(\Gamma_0(l^n))$

Received August 26, 1981.