Y. Hasegawa Nagoya Math. J. Vol. 90 (1983), 155-173

LÉVY'S FUNCTIONAL ANALYSIS IN TERMS OF AN INFINITE DIMENSIONAL BROWNIAN MOTION III

YOSHIHEI HASEGAWA

§0. Introduction

The purpose of this paper is to define minimality of surfaces in an infinite dimensional space E by probabilistic methods with the description of the relation between minimal surfaces and harmonic functions on the space E, and to analyze purely analytic properties of a certain class of quadratic forms on the space E.

We have constructed in the previous papers (Hasegawa [3], [4])¹⁾ an infinite dimensional sequence space E:

$$(0.1) \quad E = \{x = (x_1, \cdots, x_n, \cdots) \in R^{\infty}; \sup_{x_1} (x_1^2 + \cdots + x_N^2) / N < \infty\},\$$

a system of semi-norms {|| $||_N$; $1 \leq N \leq \infty$ }:

(0.2)
$$||x||_{N} = [(x_{1}^{2} + \cdots + x_{N}^{2})/N]^{1/2}$$
 and $||x||_{\infty} = \overline{\lim_{N \to \infty}} ||x||_{N}$,

and an infinite dimensional Brownian motion $B = (\Omega, B(t, \omega), P^x)$ on the space E:

(0.3)
$$B(t, \omega) = (b_1(t, \omega), \cdots, b_n(t, \omega), \cdots) \in E,$$

where $\{b_n(t, \omega); n \ge 1\}$ is a family of mutually independent 1-dimensional Brownian motions. The Laplacian \triangle_{∞} on the space E is defined as the infinitesimal generator of the Brownian motion B up to constant 1/2. Then we have interpreted some peculiar phenomena to P.Lévy's potential theory on the real Hilbert space $L^2([0, 1])$ mainly through the semi-norm $\| \|_{\infty}$. In this paper we shall describe other peculiarities to his theory again with the aid of the semi-norm $\| \|_{\infty}$.

Lévy has introduced to his theory important concepts in the geometry of the space $L^2([0, 1])$, i.e., the curvatures, in particular the mean curvature

Received May 15, 1982.

¹⁾ Without special mentions we shall use the terminologies in Hasegawa [3], [4].