RIEMANNIAN FOLIATIONS WITH PARALLEL CURVATURE

ROBERT A. BLUMENTHAL

§1. Introduction

Let M be a smooth compact manifold and let \mathcal{F} be a smooth codimension q Riemannian foliation of M. Let T(M) be the tangent bundle of M and let $E \subset T(M)$ be the subbundle tangent to \mathscr{F} . We may regard the normal bundle Q = T(M)/E of \mathcal{F} as a subbundle of T(M) satisfying $T(M) = E \oplus Q$. Let g be a smooth Riemannian metric on Q invariant under the natural parallelism along the leaves of \mathcal{F} . This is equivalent to the existence of a bundle-like metric [16] and to the existence of a transverse O(q)-structure [5]. Recall that a connection V on Q is basic if the induced parallel translation along a path lying in a leaf of \mathcal{F} agrees with the natural parallelism along the leaves and that such a connection is characterized by the condition that $\nabla_X Y = [X, Y]_q$ for all vector fields X tangent to E and Y tangent to Q where $[X, Y]_q$ denotes the Q-component of the Lie bracket of X and Y [3]. The torsion of V is the tensor field of type (1, 2) on M defined by $T(X, Y) = \nabla_X Y_q - \nabla_Y X_q - [X, Y]_q$ where X and Y are vector fields on M. There is a unique torsion-free metricpreserving basic connection V on Q [9], [11] defined as follows. Let $x \in M$. Let $f: U \to V$ be a submersion whose level sets are the leaves of $\mathscr{F}|U$ where U is a neighborhood of x in M and V is an open set in \mathbb{R}^{q} . There is a unique Riemannian metric \overline{g} on V such that $f^*(\overline{g}) = g | U$. Let \overline{V} be the Riemannian connection on V. Then $\overline{V}|U = f^{-1}(\overline{V})$. It is natural to study the relationship between the curvature of V and the structure of the foliated manifold (M, \mathcal{F}) .

In the present work we study the case of parallel curvature, that is $\nabla R = 0$ where R(X, Y)Z denotes the curvature tensor of ∇ .

Let \mathscr{F} be a Riemannian foliation with parallel curvature of a compact manifold M.

THEOREM 1. Let \tilde{M} be the universal cover of M and let $\tilde{\mathscr{F}}$ be the lift Received March 15, 1982.