N. Aoki Nagoya Math. J. Vol. 90 (1983), 119-135

TOPOLOGICAL STABILITY OF SOLENOIDAL AUTOMORPHISMS

NOBUO AOKI

§0. Introduction

In [10] A. Morimoto proved that every topologically stable homeomorphism of a compact manifold M has the pseudo-orbit tracing property in the case dim $(M) \ge 2$. Further, in studying relation between the topological stability and other stability of diffeomorphisms, he showed the following

THEOREM A. Let \mathbf{R}^r be the r-dimensional vector group and φ be a group automorphism of \mathbf{R}^r . Then the following conditions are mutually equivalent;

- (i) φ is hyperbolic,
- (ii) φ is expansive,
- (iii) φ is structually stable,
- (iv) φ has the pseudo-orbit tracing property,
- (v) φ is topologically stable.

The statement further is true for toral automorphisms.

We know (cf. see § 1) that every toral automorphism is contained in the class of solenoidal automorphisms. Thus it will be natural to ask what kind of solenoidal automorphisms have the pseudo-orbit tracing property. Our aim is to investigate this problem by using results in [2] and A. Morimoto [9, 10, 11].

§1. A main result and preparatory lemmas

Let $f: X \longleftarrow$ be a homeomorphism of a compact metric space (X, d). We denote by $\mathscr{H}(X)$ the group of all homeomorphisms of X. Then $\mathscr{H}(X)$ becomes a complete topological group with the topology given by the metric $d(f, g) = \max \{ d(f(x), g(x)), d(f^{-1}(x), g^{-1}(x)) : x \in X \} (f, g \in \mathscr{H}(X)).$ We

Received December 16, 1981.