## THE STABILITY THEOREMS FOR DISCRETE DYNAMICAL SYSTEMS ON TWO-DIMENSIONAL MANIFOLDS

## ATSURO SANNAMI

## §1. Introduction

One of the basic problems in the theory of dynamical systems is the characterization of stable systems.

Let M be a closed (i.e. compact without boundary) connected smooth manifold with a smooth Riemannian metric and  $\operatorname{Diff}^r(M)$   $(r \geq 1)$  denote the space of  $C^r$  diffeomorphisms on M with the uniform  $C^r$  topology. Let  $f \in \operatorname{Diff}^s(M)$  with  $s \geq r$ . Then f is called  $C^r$  structurally stable if and only if there is a neighborhood  $\mathscr{U}(f)$  of f in  $\operatorname{Diff}^r(M)$  such that for any  $g \in \mathscr{U}(f)$  there exists a homeomorphism  $h \colon M \to M$  satisfying gh = hf.

Another important notion of stability is the  $\Omega$ -stability. Recall that  $x \in M$  is a non-wandering point of f if and only if for any neighborhood U of x, there is a nonzero integer m such that  $f^m(U) \cap U \neq \phi$ . The set  $\Omega(f)$  of all the non-wandering points of f is a closed invariant set. f is called  $C^r$   $\Omega$ -stable if and only if there is a neighborhood  $\mathcal{U}(f)$  of f in Diff f f in Diff f f in such that for any  $g \in \mathcal{U}(f)$  there exists a homeomorphism  $h: \Omega(f) \to \Omega(g)$  satisfying gh = hf on  $\Omega(f)$ .

The essential condition to characterize these stabilities is "Axiom A" introduced by S. Smale in [17]. Namely, f satisfies Axiom A if and only if

- (a)  $\Omega(f)$  is a hyperbolic set,
- (b)  $\overline{\operatorname{Per}(f)} = \Omega(f)$ ,

where Per (f) denotes the set of all the periodic points of f. Recall that a compact f-invariant subset  $\Lambda \subset M$  is a hyperbolic set if and only if there exist constants c>0,  $0<\lambda<1$  and a Tf-invariant splitting  $TM|\Lambda=E^s\oplus E^u$  such that

$$\|\mathit{T}f^{\scriptscriptstyle n}|E_p^{\scriptscriptstyle s}\| \leq c\lambda^n \ \|\mathit{T}f^{\scriptscriptstyle -n}|E_p^{\scriptscriptstyle u}\| \leq c\lambda^n$$

for all  $p \in \Lambda$  and non-negative integers n.

Received April 22, 1981.