IRREDUCIBILITY OF SOME UNITARY REPRESENTATIONS OF THE POINCARÉ GROUP WITH RESPECT TO THE POINCARÉ SUBSEMIGROUP, II

HITOSHI KANETA

Let $P(3)$ and $P_{+}(3)$ be the 3 -dimensional space-time Poincaré group and the Poincaré subsemigroup, that is, $P(3)=R^{3} \times{ }_{s} S U(1,1)$ and $P_{+}(3)=$ $V_{+}(3) \times_{s} S U(1,1)$ where $V_{+}(3)=\left\{x_{0}^{2}-x_{1}^{2}-x_{2}^{2} \geq 0, x_{0} \geq 0\right\}$. The multiplication is defined by the formula $(x, g)\left(x^{\prime}, g^{\prime}\right)=\left(x+g^{*-1} x^{\prime} g^{-1}, g g^{\prime}\right)$ for $x, x^{\prime} \in R^{3}$ and $g, g^{\prime} \in S U(1,1)$. Here $x=\left(x_{0}, x_{1}, x_{2}\right)$ is identified with the matrix $\left(\begin{array}{lr}x_{0} & x_{2}-i x_{1} \\ x_{2}+i x_{1} & x_{0}\end{array}\right)$.

The purpose of this paper is to give an affirmative answer to the problem if there is any irreducible unitary representation of $P(3)$ such that its restriction to the semigroup $P_{+}(3)$ is reducible. To be more precise, we shall determine all $P_{+}(3)$-invariant, closed proper subspaces for the irreducible unitary representations $\left(U^{\eta, s}, \mathfrak{S}^{\eta, \varepsilon}\right)(\eta \in R, \varepsilon=0,1 / 2)$, which are associated with the one-sheeted hyperboloid $V_{i M}(3)=\left\{y_{0}^{2}-y_{1}^{2}-y_{2}^{2}=\right.$ $\left.-M^{2}\right\}(M>0)$. As for the other irreducible unitary representations of $P(3)$ it is easy to show that they are irreducible even when they are restricted to $P_{+}(3)$ (see [5], Theorem 5). Recall that all the irreducible unitary representations of the 2 -dimensional space-time Poincaré group are irreducible even when they are restricted to the Poincare subsemigroup ([5], Theorem 1). Using, among other things, the results in § 1, we shall show in the forthcoming Part III that the irreducible unitary representations of the 4 -dimensional space-time Poincaré group whose irreducibility relative to the Poincaré subsemigroup remains unsettled in [5] are reducible as the representations of the semigroup.

The basic tools of our approach are i) the eigenfunction expansions for second order ordinary differential operators $\mathscr{L}_{k, \eta}$ (see (1.1)), which are connected with the Laplacian of $S U(1,1)$, and ii) rephrased versions of the Hilbert transform and the Frobenius method for ordinary differential

[^0]
[^0]: Received November 26, 1980.

