Y. Kato Nagoya Math. J. Vol. 86 (1982), 1-38

ON NON-ELLIPTIC BOUNDARY PROBLEMS

YOSHIO KATO

Introduction

The purpose of this paper is to study the boundary value problems for the second order elliptic differential equation

(1)
$$AU = -\sum_{i,j=1}^{n} \partial_i (a_{ij}\partial_j U) + \sum_{i=1}^{n} b_i \partial_i U + cU = F$$

in a bounded domain Ω in \mathbb{R}^n $(n \geq 3)$ with the boundary condition

(2)
$$BU = \sum_{i=1}^{n} \alpha_i \partial_i U + \beta U = f$$

on the boundary Γ of Ω , where we assume that

1) for every $x \in \Gamma$, the inequality

$$\sum_{i=1}^n lpha_i(x)^2 > 0$$

holds,

2) let $(n_1(x), \dots, n_n(x))$ be the exterior unit normal vector to Γ at x, then the subset of Γ ,

$$\Gamma_0 = \left\{ x \in \Gamma; \sum_{i=1}^n \alpha_i(x) n_i(x) = 0 \right\}$$

is a C^{∞} -manifold of dimension n-2,

3) at every point $x \in \Gamma_0$, the *n*-vector $(\alpha_1(x), \dots, \alpha_n(x))$ is not tangent to Γ_0 .

Here ∂_i denotes $\partial/\partial x_i$, a_{ij} is symmetric on Ω , and Γ is assumed to be infinitely smooth and of dimension n-1. We further assume that the coefficients of the equations (1) and (2) are real-valued and infinitely differentiable on $\overline{\Omega} = \Omega \cup \Gamma$ and Γ , respectively, and that there exists a positive constant c_0 such that

Received February 21, 1977.