ON THE DISTRIBUTION (MOD 1) OF POLYNOMIALS OF A PRIME VARIABLE

MING-CHIT LIU and KAI-MAN TSANG

§1. Introduction

Throughout, ε is any small positive number, θ any real number, n, n_{j}, k, N some positive integers and p, p_{j} any primes. By $\|\theta\|$ we mean the distance from θ to the nearest integer. Write $C(\varepsilon), C(\varepsilon, k)$ for positive constants which may depend on the quantities indicated inside the parentheses.

Dirichlet's theorem says that for any θ, N there exists n such that

$$
\begin{equation*}
n \leqslant N \quad \text { and } \quad\|\theta n\|<N^{-1} \tag{1.1}
\end{equation*}
$$

Furthermore, as a direct consequence of (1.1), there are infinitely many n such that

$$
\begin{equation*}
\|\theta n\|<n^{-1} \tag{1.2}
\end{equation*}
$$

Improving an estimate of Vinogradov [12], Heilbronn [6] extended (1.1) by showing that for any θ, ε, N there are n and $C(\varepsilon)$ such that

$$
\begin{equation*}
n \leqslant N \quad \text { and } \quad\left\|\theta n^{2}\right\|<C(\varepsilon) N^{-1 / 2+\varepsilon} \tag{1.3}
\end{equation*}
$$

Later, Davenport [3] extended (1.3) by proving that if g is a polynomial of degree $k \geqslant 2$ with real coefficients and without constant term then for any ε, N there are n and $C(\varepsilon, k)$ such that

$$
\begin{equation*}
n \leqslant N \quad \text { and } \quad\|g(n)\|<C(\varepsilon, k) N^{-1 /\left(2^{k-1)+\varepsilon}\right.} \tag{1.4}
\end{equation*}
$$

The results of Heilbronn [6] and Davenport [3] sparked off a series of investigations (see [9]). In particular, recently Schmidt has made remarkable progress in [9, 10]. However all these developments concerning (1.1) have no parallel results for prime. This can be seen from the following example. Let q be any positive integer having at least two

Received June 6, 1980.

