Y. Aihara and S. Mori Nagoya Math. J. Vol. 84 (1981), 209-218

ALGEBRAIC DEGENERACY THEOREM FOR HOLOMORPHIC MAPPINGS INTO SMOOTH PROJECTIVE ALGEBRAIC VARIETIES

YOSHIHIRO AIHARA AND SEIKI MORI

§1. Introduction

The famous Picard theorem states that a holomorphic mapping f: C $\rightarrow P^{1}(C)$ omitting distinct three points must be constant. Borel [1] showed that a non-degenerate holomorphic curve can miss at most n+1 hyperplanes in $P^{n}(C)$ in general position, thus extending Picard's theorem (n = 1). Recently, Fujimoto [3], Green [4] and [5] obtained many Picard type theorems using Borel's methods for holomorphic mappings. In [3] and [4], they proved that a holomorphic mapping $f: \mathbb{C}^m \to \mathbb{P}^n(\mathbb{C})$ omitting any n+2hyperplanes in general position must have the image lying in a hyperplane, especially Green showed that the same result holds under the condition that hyperplanes are distinct. Furthermore, in [5] he proved that a holomorphic mapping f of C^m into a projective algebraic variety V of dimension n omitting n+2 non-redundant hypersurface sections must be algebraically degenerate. On the other hand, in the equidimensional case, Carlson and Griffiths [2] obtained a generalization of Nevanlinna's defect relation for holomorphic mappings of C^n into an *n*-dimensional smooth projective algebraic variety V. By their results, a holomorphic mapping $f: \mathbb{C}^n \to \mathbb{C}^n$ $P^{n}(C)$ having the Nevanlinna's deficiency $\delta(D) = 1$ for a hypersurface $D \subset C$ $P^{n}(C)$ of degree $\geq n+2$ with simple normal crossings, must be degenerate in the sence that $J_f \equiv 0$ on C^n . While, Noguchi [6] obtained an inequality of the second main theorem type for holomorphic curves in algebraic varieties, thus a holomorphic curve f in an algebraic variety V which has the Nevanlinna's deficiency $\delta(\Sigma) = 1$ for hypersurfaces Σ with some conditions in V must be algebraically degenerate. In this paper, we shall show that for n+2 ample divisors $\{D_j\}_{j=1}^{n+2}$ with normal crossings, any holomorphic mapping of C^m into an *n*-dimensional smooth projective algebraic variety

Received March 18, 1980.