B. L. Rozovskii and A. Shimizu Nagoya Math. J. Vol. 84 (1981), 195-208

SMOOTHNESS OF SOLUTIONS OF STOCHASTIC EVOLUTION EQUATIONS AND THE EXISTENCE OF A FILTERING TRANSITION DENSITY

B. L. ROZOVSKII AND A. SHIMIZU

In this paper, we shall discuss the smoothness of solutions of stochastic evolution equations, which has been investigated in N. V. Krylov and B. L. Rozovskii [2] [3], to establish the existence of a filtering transition density.

First, we introduce the filtering equation, which has been discussed in [1] [3] [6] and [9]. Let us consider the system (x_i, y_i) given by the stochastic differential equation

$$egin{aligned} dx_t &= a(x_t, y_t, t)dt + b(x_t, y_t, t)d
u_t \ dy_t &= A(x_t, y_t, t)dt + B(y_t, t)d
u_t \ x_0 &= heta, \ y_0 &= heta, \ t \in [0, T], \ T < +\infty \ , \end{aligned}$$

where $\nu = \{\nu_i\}_{i \in [0,T]}$ is a $(d + d_i)$ -dimensional Brownian motion defined on a complete probability space, and a, A, b and B are matrices of type $d \times 1$, $d_1 \times 1$, $d \times (d + d_i)$ and $d_1 \times (d + d_i)$ respectively. We denote by F_i^{γ} the complete σ -algebra $\sigma\{y_r, 0 \leq \tau \leq t\}$. Let us denote by $P_i[f]$ a measurable modification of the conditional expectation $E[f(x_i, y_i, t) | F_i^{\gamma}]$. We put

$$egin{aligned} C &= (BB^*)^{-1/2} \;, \qquad eta(x,\,y,\,t) = CA \;, \ &\overline{w}_t = \int_0^t C(y_ au, au) dy_ au - \int_0^t P_ au[eta] d au \;, \ &y_t' = \overline{w}_t + \int_0^t P_ au[eta] d au \end{aligned}$$

and

$$ho_{\iota} = \exp\left\{-\int_{\mathfrak{0}}^{\iota}P_{\mathfrak{r}}[eta]d\overline{w}_{\mathfrak{r}} - rac{1}{2}\int_{\mathfrak{0}}^{\iota}|P_{\mathfrak{r}}[eta]|^2\,d au
ight\}\,.$$

Received March 11, 1980.