SMOOTHNESS OF SOLUTIONS OF PARABOLIC EQUATIONS IN REGIONS WITH EDGES

A. AZZAM and E. KREYSZIG*

§1. Introduction

We consider the mixed initial-boundary value problem for the parabolic equation

$$
\begin{equation*}
L u=\sum_{i, j=1}^{2} a_{i j}(x, t) u_{x_{i} x_{j}}+\sum_{j=1}^{2} a_{j}(x, t) u_{x_{j}}+b(x, t) u-u_{t}=f(x, t) \tag{1.1}
\end{equation*}
$$

in a region $\Omega \times(0, T]$, where $x=\left(x_{1}, x_{2}\right)$ and $\Omega \subset R^{2}$ is a simply-connected bounded domain having corners.

Our main objective will be the study of smoothness properties of solutions of that problem. Early investigations of that type concern elliptic equations in domains with a smooth boundary, starting with the Dirichlet problem for the Laplace and Poisson equations and proceeding to general second order elliptic equations as well as general boundary conditions; see S. Agmon, A. Douglis and L. Nirenberg [1]. A more recent survey of the elliptic case and further references are given by D. Gilbarg and N. S. Trudinger [6].

Similar work on parabolic equations appeared later; we mention in particular investigations by A. Friedman [5] on the first boundary value problem, by Z. Itô [8] and L. I. Kamynin and V. N. Maslennikova [9] on the second boundary value problem and by N. V. Zitaraŝu [15] on general boundary value problems. Further references are given in [12].

The case of a nonsmooth boundary was treated by E. A. Volkov [14], V. A. Kondrat'ev [10] and others whose work is discussed or mentioned in [7]; all these papers concern elliptic equations, whereas we shall deal with parabolic equations.

We want to mention that those problems in regions with edges and

[^0]
[^0]: Received December 21, 1979.

 * Work supported by the N.S.E.R.C. of Canada under grant no. A9097.

