G. P. Wever Nagoya Math. J. Vol. 84 (1981), 9-30

THE MODULI OF A CLASS OF RANK 2 VECTOR BUNDLES ON P^3

G. PETE WEVER

Introduction

Barth and others [1], [2], [5] have begun the study of stable algebraic vector bundles of rank 2 on projective space. Maruyama [7] has shown that stable rank 2 bundles have a variety of moduli which is the finite union of quasi-projective varieties.

The point of view taken here is to study a rank 2 vector bundle on $P = P_k^3$, k an algebraically closed field, by looking at the zero sets of the global sections of the bundle. The zero set is a curve in P. A skew bundle on P is a rank 2 bundle which has a global section whose zero set is a pair of skew lines. Skew bundles are precisely the stable rank 2 bundles with Chern classes (which we consider as integers) $c_1 = c_2 = 2$. This paper gives the explicit description of the moduli of skew bundles as an open subscheme in P_k^5 . These bundles, see Remark 2.1.3, were among the first known examples of indecomposable vector bundles on P [6, Section 10]. From a point of view different from the present one Barth [1, Section 7] has implicitly given the moduli of these bundles which he calls null-correlation bundles.

More precisely we do the following. A skew bundle parametrized by a scheme T is a rank 2 vector bundle E on P_T^3 such that the restrictions of E to the fibres over geometric points of T are skew bundles. For a locally noetherian scheme T let $Sk(T) = \{E | E \text{ skew bundle parametrized} by T\}/\sim$, where $E_1 \sim E_2$ if there exists some isomorphism of E_2 and $E_1 \otimes_{P_T^3} L$ where L is the pullback of a line bundle on T. If $g: T' \to T$ is a morphism and E a skew bundle parametrized by T then the pullback of E to $P_{T'}^3$ is a skew bundle parametrized by T'. This gives a natural map $g^*: Sk(T) \to Sk(T')$. Clearly Sk is a contravariant functor from the category of locally noetherian schemes to the category of sets. Our main theorem (Theorem

Received October 3, 1979.