J. Herzog Nagoya Math. J. Vol. 83 (1981), 183-195

WHEN IS A REGULAR SEQUENCE SUPER REGULAR?

J. HERZOG*)

Let (B, \mathscr{F}) be a filtered, noetherian ring. A sequence $x = x_1, \dots, x_n$ in B is called super regular if the sequence of initial forms

$$\xi_1 = L(x_1), \cdots, \xi_n = L(x_n)$$

is a regular sequence in $gr_{\mathfrak{F}}(B)$.

If B is local and the filtration \mathscr{F} is \mathfrak{A} -adic then any super regular sequence is also regular, see [6], 2.4.

In [3], Prop. 6 Hironaka shows that in a local ring (B, \mathfrak{M}) an element $x \in \mathfrak{M} \setminus \mathfrak{M}^2$ is super regular (with respect to the \mathfrak{M} -adic filtration) if and only if x is regular in B and $(x) \cap \mathfrak{M}^{n+1} = (x)\mathfrak{M}^n$ for every integer n.

This result is extended to a more general situation in [6], 1.1. In the present paper we will characterize super regular sequences in a relative case:

Let A be a regular complete local ring, B = A/I an epimorphic image of A and $x = x_1, \dots, x_n$ a regular sequence in B which is part of a minimal system of generators of the maximal ideal of B. Let $y = y_1, \dots, y_n$ be a sequence in A which is mapped onto x. Then y is part of a regular system of parameters of A. Therefore y is a super regular sequence in A.

We put $\overline{A} = A/(y)A$, $\overline{I} = I/(y)I$ and $\overline{B} = B/(x)B$. Then $\overline{B} = \overline{A}/\overline{I}$, since x is a B-sequence.

As a consequence of our main result, the following conditions are equivalent:

- (a) x is a super regular sequence in B
- (b) For all elements $g \in \overline{I}$ there exists $f \in I$, such that

$$\overline{f} = g$$
 and $\nu(f) = \nu(g)$.

(Here \overline{f} denotes the image of f in \overline{I} and $\nu(f)$ the degree of the initial form

Received October 6, 1979.

^{*&#}x27; During the preparation of this work the author was supported by C.N.R. (Consiglio Nazionale delle Ricerche).